
COPYRIGHT © 1980 by 
Technical Systems Consultants, Inc. 

111 Providence Road 
Chapel Hill, North Carolina  27514 

All Rights Reserved.

™ FLEX is a trademark of Technical Systems Consultants, Inc.



                          MANUAL REVISION HISTORY

Revision      Date      Change

   A          3/80      Original Release

                                                COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser.  Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited.  Use of this program, or any part thereof,
for any purpose other than single end use by the purchaser is prohibited.

                                                          DISCLAIMER

The supplied software is intended for use only as described in this manual.  Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility.  Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material.  Technical Systems Consultants, Inc..
reserves the right to make changes in such material at any time without notice.



                               PREFACE

This  software  package  contains memory diagnostics and disk diagnostic
and repair utilities.  They are intended to aid the  user  in  detecting
problems  with  computer  memory  and disk systems.  Some of the utility
programs assist in the recovering of data from damaged disks.  It should
be  stressed  that  these  programs  do not perform miracles.  There are
certain types of failures which are very difficult for any diagnostic to
detect,  or for any repair program to correct.  It was intended that the
programs in this package detect many common problems rather than only  a
few rare problems.

This manual is divided into two main sections.  The first deals with the
memory  diagnostics,  and  the second deals with the disk diagnostic and
repair utilities.

In  the  section  on memory-diagnostics, there is a discussion of memory
diagnostics and computer memory in general.  It is recommended that this
subsection  be  read  even  if  you  are  already  familiar  with memory
diagnostics and computer memory since several terms  are  defined  here.
The  next subsection gives an overview of the memory diagnostics in this
package.   A  troubleshooting  guide  is  next,  which   outlines   some
procedures  to  follow  when  hunting  for a memory problem.  A detailed 
description  of  each  diagnostic  completes  the  section   on   memory
diagnostics.

In the disk utility section, we have a general discussion of  disks  and
their  problems,  followed  by  an  overview   of  the utilities in this
package.  A troubleshooting guide for disk problems then  discusses  the
symptoms  of disk problems and gives some general hints on tracking down
a problem.  This is  followed  by  detailed  descriptions  of  the  disk
utilities.   Lastly,  a "Case Studies" section demonstrates how the disk
utilities may be used in detecting, and sometimes correcting,  problems.

                                 -iii-



                                  -iv-



                          TABLE OF CONTENTS

Preface   iii

Section I: MEMORY DIAGNOSTICS

INTRODUCTION TO MEMORY DIAGNOSTICS  1
  Memory Diagnostics in General 3
  Memory in General 4
  Types of Memory Failures 5
  Types of Memory Diagnostics in General 5

THE MEMORY DIAGNOSTICS IN THE PACKAGE 7
  System Dependencies 7
  Relocating Memory Diagnostics 8
  Adapting Memory Diagnostics to Other Monitors 8

MEMORY TROUBLESHOOTING GUIDE 10
  Symptoms of a Problem 10
  Tracking Down the Problem 11
  If You Discover a Failure 12
  General Hints 14

MEMORY DIAGNOSTIC DESCRIPTIONS 15
  CONVERGE 17
  DYNAMIC 21
  QUICK 23
  RANDOM 25
  WALKO 27
  WALKI 29

Section II: DISK DIAGNOSTICS AND UTILITIES

INTRODUCTION TO DISK DIAGNOSTICS AND UTILITIES 31
  Disks in General 33
  Structure of a FLEX Disk 34
  Random Files 36
  How FLEX Handles Files 36
  Types of Disk Problems 37

THE DISK UTILITIES IN THIS PACKAGE 39
  System Dependencies 39

DISK TROUBLESHOOTING GUIDE 42
  Symptoms of a Problem 42
  General Hints 43

                                  -v-



DISK DIAGNOSTICS AND UTILITIES DESCRIPTIONS 45
  COPYR 47
  EXAMINE 49
  FILETEST 61
  FLAW 65
  RAWCOPY 69
  REBUILD 71
  RECOVER 73
  TEST 77
  UNDELETE 79
  VALIDATE 83

CASE STUDIES 87
  Introduction 89
  CASE I: A Simple Read Error 90
  CASE II: A "Sector Not Found" Error 93
  CASE III: Recovering a Random File 94
  CASE IV: A Structural Problem 96
  CASE V: Rehabilitating a Bad Directory Chain 98
  CASE VI: A Desperate Measure 100

COMMAND SUMMARY 101

                                  -vi-



                   INTRODUCTION TO MEMORY DIAGNOSTICS

                                  -1-



6809 FLEX DIAGNOSTICS

                                  -2-



                                                   6809 FLEX DIAGNOSTICS

                   INTRODUCTION TO MEMORY DIAGNOSTICS

     Memory diagnostics are used to determine  if  a  problem  with  the
computer's  memory  exists.   If  a  problem is detected, the diagnostic
should also give information to assist the  user  in  determining  which
parts  must  be replaced or repaired.  We shall not go into great detail
in discussing how a computer's memory operates and why it fails as  this
would  involve  discussing  electronics and semiconductor physics.  Only
enough background information will be given so that the user can make  a
reasonable  decision as to which diagnostic to run, and how to interpret
the messages given by the  diagnostic.  The aim of this introduction  is
to  give  the  reader  a  general feeling for memory problems and memory
diagnostics.

Memory Diagnostics In General

     A "perfect" diagnostic does  not  exist.   That  is,  there  is  no
diagnostic  that  can detect all possible memory problems and accurately
report on them.  Such a diagnostic would have to be  designed  based  on
detailed  knowledge of the internal physical and electronic structure of
the components used in the construction of the memory that is  going  to
be  tested.  With the large number of memory chips and circuit boards on
the market, the writing of a diagnostic that will work correctly on each
of  them  is  impossible.  Instead, more general diagnostics are written
which  are  applicable  to  a  large  variety  of   memory   types   and
organizations.

     Over the years, certain diagnostic techniques have shown themselves
to  be  effective  in detecting and isolating failures even when used on
different types of memory.  Some of  these  techniques  that  have  been
incorporated  into  the  memory  diagnostics  in this package.  However,
since no diagnostic is "perfect", there will always be certain types  of
failures  that a given diagnostic will not detect correctly.  Therefore,
it is good practice to run several different diagnostics  just  in  case
the  first  ones  were  not  able  to  detect an error.  It is also good
practice to let a diagnostic run for several minutes so that  it  has  a
chance  to  detect  "intermittent" errors; that is, those errors that do
not fail every time, but only once in a while.

     Memory  diagnostics work by storing known data into memory and then
later checking to see if the data is the same as was stored  there.   If
the  pattern is the same, then the diagnostic assumes that the memory is
working correctly.  The diagnostic may then try different  data,  or  it
may  use  the same data over again.  If the data does not match what was
stored there, the diagnostic assumes that the memory has failed to store
the  information  correctly.   It knows what the data is supposed to be,
and  it knows what it actually is.  It  also  knows  into  which  memory
location  the data was stored.  All of this information is reported back
to  the  user's  terminal.   With  this  information,  and  some   other
information  provided  by  the  manufacturer of the memory, the user can
usually determine which circuit board or memory component is not working
correctly.

                                  -3-



6809 FLEX DIAGNOSTICS

     Most memory diagnostics differ only in the data  that  is  used  to
test  the  memory.   The  different  types of memory diagnostics will be
discussed a little bit later in this introduction.

                           Memory in General

     Computer memory  can  be  contructed  from  various  materials  and
electrical  components.   There is magnetic "core" memory, semiconductor
memory, magnetic bubble memory, and other less  widely  known  forms  of
computer  memory.   The  type of memory in the computer determines which
diagnostics are most effective  in  detecting  problems.   For  example,
diagnostics  which  detect problems specific to core memory are not that
useful when testing magnetic bubble memory.  The  most  common  form  of
memory  found  in  microcomputers  is semiconductor memory, often called
memory "chips"  because  it  is  packaged  in  the  form  of  integrated
circuits.   Other  types of memory are found so rarely in microcomputers
that no further discussion of them is warranted.

     There  are  two  forms  of  semiconductor memory: static memory and
dynamic memory.  In static memory, once a value is stored, it will  stay
there  until  changed  as  long as the machine is turned on.  In dynamic
memory, the data will fade away unless it is  "refreshed"  periodically.
Normally, the refresh is performed automatically by additional circuitry
on the memory board.  The  advantages  of  dynamic  memory  over  static
memory  are  that it uses less power and it can be made denser, that is,
more data can be stored on a memory chip.  The user should be  aware  of
which  type of semiconductor memory is in the machine.  If it is static,
there is no need to run diagnostics which detect  problems  specific  to
dynamic memory, like the test in this package called DYNAMIC.

     Even with  dynamic  memory,  only  a  relatively  small  amount  of
information  can  be  stored on an individual memory integrated circuit.
In addition, the internal structure of most memory chips  is  such  that
only  one  bit  at  a time is accessible.  To get around these problems,
computer memory is usually made up of several memory chips.  The problem
of  being  able to read only one bit at a time is solved by having eight
chips act together, each of them storing one bit of the eight-bit  byte.
For  lack  of  a  better  term,  we  will  call this "parallel organized
memory".  Thus, one segment of memory consists  of  eight  memory  chips
acting  in parallel to hold the eight-bit bytes.  Larger memory capacity
is realized by adding more memory segments, that is, more sets of  eight
chips.   Note that in parallel organized memory, each chip holds one bit
from each byte.  One chip holds the leftmost bit from each byte, another
holds all of the bits that are second from the left, and so forth.  Some
of the memory  diagnostics  are  designed  to  take  advantage  of  this
organization.   By changing all of the bits in a byte, the diagnostic is
really changing only one bit in each memory chip.   Thus,  it  can  test
eight chips simultaneously.

     Most microcomputer memory is parallel organized  memory.   This  is
because  most memory chips made today are those that can handle only one
bit at a time.  Some machines contain small scratchpad memories for  use
by  the  monitor.   These  memories are usually on a single chip and can

                                  -4-



                                                   6809 FLEX DIAGNOSTICS

process all eight bits  at  once.   The  diagnostics  included  in  this
package will run on any organization of memory, but some may not be very
efficient on some organizations.

                        Types of Memory Failures

     When memory fails, one of two cases exist: a bit is a zero when  it
should  be  a  one,  or it is a one when it should be a zero.  The first
case is called a "bit drop"; the second, a  "bit  pick".   In  addition,
memory  failures  are  said  to  be  "hard"  failures  when  they can be
reproduced  at  will;  that  is,  when  a  given  pattern  will   always
demonstrate  the  failure.   "Soft"  errors,  however,  cannot always be
reproduced.

     Soft  errors  may  be  temperature  dependent.  This means that the
memory will fail only when it is  "hot"  or  only  when  it  is  "cold".
Memory  that fails when it is cold will fail only for a short time after
the machine is turned on.  Once the machine warms up,  the  memory  will
run without error.  Memory that fails when it is hot will not fail until
after the machine has had time to warn up.  When a problem is suspected,
the memory should be checked out under both conditions, hot and cold.

     A memory failure is  said  to  be  "pattern  sensitive"  when  only
specific  test  patterns  expose the error.  For example, a bit may pick
only if all of the bits surrounding it  in  the  chip  are  ones.   Many
diagnostics  try  more  than  one  pattern  in an attempt to detect such
sensitivity.

     The  "intermittent"  error is one that appears seemingly at random.
Some times the memory will fail with a given pattern, and other times it
will  not  fail  with  the  same  pattern.   Such problems are extremely
difficult to detect, even with the best diagnostics.

     There  are  other  sources  of  memory errors than the memory chips
themselves.  A memory board contains circuits that determine which chips
are  to  be  read  or written; this is called the "select logic".  Also,
some boards contain their own power regulators.  Dynamic  memory  boards
may  contain additional logic to perform the refresh operation.  Failure
in these circuits may result in  very  peculiar  errors.   For  example,
refresh  failure  may  result  in  all  of the memory on the board being
cleared.  The troubleshooting hints later on in this manual will mention
more about failures in these circuits.

                 Types of Memory Diagnostics in General

     The ideal memory diagnostic is one that would try all possible data
patterns when testing a memory chip.  For a memory chip containing  2048
bits,  this  would  mean trying an extremely large number (3 followed by
616 zeroes) of patterns.  Clearly, this is not  practical.   There  are,
however, some patterns which are used frequently because they detect the
most common errors.  These include: all zeroes, all ones, walking  zero,
and  walking  one.  In addition, a "random" pattern is often used in the

                                  -5-



6809 FLEX DIAGNOSTICS

hope that it will eventually find a failing pattern.

     The  "all  zeroes" pattern is quite simple.  The entire memory chip
is cleared, that is, set to zero.  This  is  used  to  detect  hard  bit
picks,  that  is,  any  bit that cannot be set to zero.  Conversely, the
"all ones" pattern sets every bit in the chip to  a  one.   This  is  to
detect hard bit drops, that is, any bit that cannot be set to a one.

     The "walking zero" pattern is more of a technique  than  an  actual
pattern.   The pattern itself has every bit in the chip, except one, set
to a one.  Thus there is one bit that is different from the all  of  the
other bits in the chip.  This is an attempt to detect weak bits that may
be unduly influenced by their neighboring bits in the  chip.   Once  the
pattern is written and checked, the data pattern is shifted so that some
other bit is now the only one that is different.  This  continues  until
each  bit  in the chip has, at some time, been different from all of the
others.  Thus, the "different" bit is said to have "walked" through  the
memory  chip.   The "walking one" test is the complement of the "walking
zero" test in that all of the bits in each chip, except one,  are  zero.
The process of "walking" the bit through the memory chip is the same.

     A random pattern is one that is generated by a pseudo-random number
generator.  A series of pseudo-random numbers is generated and stored in
memory as the test pattern.  After the  pattern  has  been  checked  for
errors  a  new sequence is generated and used as the test pattern.  This
process is repeated over and over in the  hope  that  pattern  sensitive
errors will be uncovered.

     There is one type of test that doesn't actually check  the  ability
of  a  chip  to retain data, but rather checks the select logic and data
paths.  This is the "convergence" test.  The basic goal of a convergence
test is to determine if more than one bit is changing in response to the
writing  of  data.  Causes   of  such  failures  are  discussed  in  the
troubleshooting guide.

                                  -6-



                                                   6809 FLEX DIAGNOSTICS

                 THE MEMORY DIAGNOSTICS IN THIS PACKAGE

     This  diagnostic package contains six memory diagnostics.  There is
a zeroes and ones test  (QUICK),  a  random  pattern  test  (RANDOM),  a
convergence  test (CONVERGE), a dynamic memory dropout test (DYNAMIC , a
walking zero test (WALKO), and a walking one test (WALK1).  The two most
useful  tests  are QUICK and RANDOM.  CONVERGE and DYNAMIC will probably
not be used frequently unless  the  user  suspects  that  a  convergence
problem  or bit dropout problem actually exists.  WALKO and WALK1 do not
take advantage  of  the  parallel  organization  of  most  microcomputer
memory; thus they run slowly.   Their most frequent application would be
in testing small scratchpad memory chips, such as the  Motorola  MC6810,
which are not parallel organized memory devices.

     All six diagnostics are written to be  position  independent;  that
is,  they will run correctly regardless of where they are loaded in user
memory.  Normally, they are loaded into the FLEX™ Utility Command Space.
However,  they  may be moved to other areas of memory so that the memory
in which FLEX normally resides may be tested.  This is  discussed  later
in "Relocating Memory Diagnostics".

     To aid in analysing failures, each diagnostic,  when  an  error  is
detected,  prints  the failing pattern in binary.  Thus, any bit drop or
bit pick is immediately apparent, and the number of the failing bit  can
be readily determined.

                          System Dependencies

     The memory diagnostics are designed to run under the FLEX operating
system.  They use FLEX subroutines  to  decode  their  arguments.   Once
running,  however,  the  diagnostics have no need for FLEX.  This allows
the memory in which FLEX normally resides to be tested.  While  running,
all  terminal  input  and output is performed through the system monitor
ROM.  As released, the diagnostics are configured to  interface  to  the
SWTPc® monitor SBUG-E®.  Adapting to other monitors is discussed in the
section "Adapting Memory Diagnostics to Other Monitors".

     Some  6809  systems  use a memory mapping device to make all of the
memory in the machine appear to  be  contiguous,  even  if  it  is  not.
Hardware  is  installed  which  translates  the  address  that  the  CPU
references (called the "logical address") to the actual address  of  the
memory  board  (called  the "physical address").  The diagnostics cannot
detect this mapping  and  thus  will  always  report  logical  addresses
instead of physical addresses when issuing messages.

     As each diagnostic runs, it issues a character to the  terminal  as
an  indication  of having completed one pass of the test.  The number of
such characters that the diagnostic will print per line is determined by
the  FLEX TTYSET width value.  Since the diagnostics do not use FLEX for
--------------------
FLEX is a trademark of Technical Systems Consultants, Inc.
SWTPc   and  SBUG-E  are  trademarks  of  Southwest  Technical  Products
Corporation.

                                  -7-



6809 FLEX DIAGNOSTICS

output, they memorize the width value and act on it themselves.  If  the
width  value  is  zero,  it  is  assumed  that  the user's terminal will
automatically go to a new line whenever the end of the current  line  is
reached.   If  the  user's terminal does not have this capability, set a
width value using the TTYSET command to prevent the  characters  printed
by the diagnostic from, running off of the right side of the terminal.

                     Relocating Memory Diagnostics

     The only time that a diagnostic would have to be relocated would be
when it is desired to test the area of memory  in  which  the  operating
system resides.  To facilitate this relocation, a utility called RUN has
been added to the diskette.  To test the operating system  area  with  a
diagnostic, type:

                    RUN,0,diagnostic name,C000,DFBF

"Diagnostic  name"  is the name of the diagnostic being run.  Any of the
memory diagnostics, except DYNAMIC, may be specified.  DYNAMIC cannot be
used  to  test all of the operating system area because it would destroy
scratch cells  used  by  the  SBUG-E  monitor  on  SWTPc  systems.   The
arguments  C000  and  DFBF specify the FLEX area of memory.  Do not test
the area DFBF through DFFF on systems with an  SBUG-E  monitor  as  this
destroys data used by the monitor in performing input and output.

     When testing the operating system area, the  message  FLEX  ASSUMED
OVERWRITTEN  will be printed.  This is purely an informative message and
does not affect the running of the diagnostic.  When the  diagnostic  is
stopped,  control  will  be  returned  to the monitor ROM since FLEX was
destroyed during the test.  It is necessary to reboot the  system  after
testing the operating system area.

     The run-time stack for each diagnostic is located immediately after
the  diagnostic itself.  All diagnostics, except CONVERGE, need 32 bytes
for stack space; CONVERGE needs 256 bytes.   There  is  no  need  to  be
concerned  about  the  stack  when  relocating  a diagnostic to test the
operating system area.

             Adapting Memory Diagnostics to Other Monitors

     As mentioned earlier, the diagnostics in this package are  designed
to run on a system using the SWTPc monitor SBUG-E.  To aid in conversion
to systems which run FLEX, but with a different monitor,  the  calls  to
the  monitor  routines are vectored.  The vectors are the same in all of
the memory diagnostics.  Currently, each vector  is  an  indirect  jump.
These  may be replaced by indirect jumps or extended jumps, as required.

     There are four vectors.  Following is  a  description  of  each  of
them.  The address given is that of the jump instruction itself, not the
bytes to be patched.  Those bytes to be patched will differ depending on
whether  extended  or  indirect  jumps  are  used  to interface with the
monitor routines.

                                  -8-



                                                   6809 FLEX DIAGNOSTICS

Input Character ($C103)
     This routine reads one character from the terminal, returning it in
     the  A-accumulator.  The parity bit must be removed by the routine.
     The B, X, Y, and U registers must be preserved.

Output Character ($C107)
     This routine outputs the character  in  the  A-accumulator  to  the
     terminal. The B, X, Y, and U registers must be preserved.

Check for Character ($C10B)
     This  routine  checks  for  a  character  having  been typed on the
     terminal.  The "Z" status bit is used to communicate the result  of
     the check.  If "Z" is on (BEQ instruction will branch), a character
     was not typed.  If "Z" is off  (BNE  instruction  will  branch),  a
     character  was  typed.   The  character  should not be read by this
     routine.  The B, X, Y, and U registers must be preserved.   If  the
     monitor does not have such a routine, make the following patch:

                         Starting at $C10B: 1A 04 39

     With  this  patch,  the  test will still run, but it can be stopped
     only by resetting the machine; typing a character will not stop the
     diagnostic.

Return to Monitor ($C10F)
     This  returns control to the monitor ROM.  It is used only when the
     diagnostic is stopped after  having  tested  the  operating  system
     area.

                                  -9-



6809 FLEX DIAGNOSTICS

                    MEMORY TROUBLESHOOTING GUIDE

                            Introduction

     This portion  of  the  manual  gives  hints  on  using  the  memory
diagnostics  in  this  package.  Some of the suggestions are directed to
those users who repair their equipment themselves.  If you are  not  one
of these persons, it suffices to merely determine that a problem exists,
and then have the machine repaired by the supplier or manufacturer.

                          Symptoms of a Problem

     There are some events that may occur when using the computer  which
indicate  that memory might be failing.  While some of these may also be
caused by errors in a program, the possibility of memory failure should
be  kept  in mind.  Here are some things which might be an indication of
failing memory:

  1) Working programs suddenly do not work properly.
     If a program  that  is  known  to  run  correctly  suddenly  starts
     producing  unpredictable results, it may be because the program has
     been destroyed in memory by a memory failure.   Of  course,  it  is
     possible  that a previously unknown error in the program is causing
     the failure.  If the program that has failed is one that  you  have
     recently  modified,  it  might be that you introduced an error when
     making the modification.  Also, the  program  may  be  reacting  to
     unrecognized  input;  the  "garbage  in,  garbage  out" phenomenon.
     However, if the program has been running solidly for a  long  time,
     and  suddenly  starts  to  fail for most input, then memory failure
     should be considered as a possible cause.  It does not take long to
     run  some  diagnostics  to  check,  the  memory, and it could avoid
     trouble later on.

   2) Running  the  same  program  more  than  once,  with the same data,
     produces different results.
     This is a more reliable indicator of hardware problems.  Of course,
     an uninitialized  variable  in  the  program  may  also  give  this
     symptom.   However, if a program which has run reliably in the past
     starts  producing  inconsistent  results,  memory  failure  may  be
     indicated.

  3) Data files being altered.
     If  the  data  in a file does not correspond to what was written to
     it, it is possible that the data was altered in  the  buffer  by  a
     memory  failure.  One should be sure, however, that a program error
     did not write the data incorrectly.  Some additional clues  may  be
     discovered  by analysing the changes in the file.  If characters in
     the file change their "case",  (upper  case  letters  become  lower
     case,  or the converse), this would indicate a change in one bit of
     the character, which might be caused by memory failure.  If a  data
     character  is changed to another, and the difference is only in one
     bit, then memory problems should be suspected.  For example, a  "G"
     (binary 01000111) may be turned into an "F" (binary 01000110).

                                  -10-



                                                   6809 FLEX DIAGNOSTICS

     The above list is not exhaustive.  However, any time that  "strange
things" happen in a program, one must not immediately blame the program.
While it would be foolish to immediately spend an  hour  running  memory
tests  every  time  that  something  unexpected  happens, memory failure
should be considered a  possibility,  especially  if  "solidly  running"
programs start to fail.

                       Tracking Down the Problem

     If  you  suspect a particular type of memory problem, then it makes
sense to choose a diagnostic that is tailored to finding  that  type  of
problem.  On the other hand, if you are not sure that there is a problem
with memory, but you suspect that something is wrong, no one  diagnostic
may  be  enough to isolate the problem.  Several diagnostics may have to
be run before the problem is found, or before it  becomes  evident  that
memory  is  not  at  fault.   The following procedure is a good starting
point in tracking down problems.

  1) Run  the  diagnostic  QUICK,  without parameters, for 20 passes (20
     plus signs printed). If no failure is uncovered, then:

  2) Run  the  diagnostic  RANDOM, without parameters, for 20 passes (20
     plus signs printed). If the failure does not yet show up, then:

  3) Run  QUICK  and  RANDOM  in the operating system area for 20 passes
     each.  (See the section "Relocating  Memory  Diagnostics"  for  the
     proper  procedure.)  If  an  error has not yet been uncovered, then
     memory is in reasonably good shape.  If there is a memory  problem,
     it  is  very intermittent, very pattern sensitive, or a convergence
     problem.  It may also be a refresh  problem  with  dynamic  memory.
     The following steps attempt to detect these problems.

  4) If you do not have dynamic memory in your computer, skip this step;
     if  you do, then run the diagnostic DYNAMIC for 15 minutes.  Do not
     try to run this test in the operating system area.  If no error  is
     detected, then the refresh logic is probably not failing.

  5) Run the diagnostic CONVERGE for 5 passes (10 characters are printed
     on  the  screen).   If  no  error is detected, then run 5 passes of
     CONVERGE in the operating system area.  If no error is detected  at
     this  point,  then  the address and data paths are probably working
     correctly.

  6) Run WALK0 and WALK1 for 10 passes each (10 plus signs printed).  If
     no error is detected, run 10 passes of each in the operating system
     area.

     If, after all of this, no error has  been  uncovered,  then  either
there  is  no  problem,  or the problem is temperature sensitive or very
intermittent.  If all of the above tests were run after the computer had
been  warmed  up,  then  they  should be run again while the computer is
cold.  To do this, turn off the computer and let it cool down for  about
15 minutes. Turn on the machine, boot up the system, and immediately

                                  -11-



6809 FLEX DIAGNOSTICS

perform one of the steps above.  If no error is detected, turn  off  the
machine,  let  it  cool down, then turn it on and perform the next step.
If this does not find the problem, then it is probably not a temperature
dependent problem.

     If  the  diagnostic  does  not  run  correctly  (gives  meaningless
messages, returns to the monitor, does not Print pass indicators, etc.),
it is possible that it is running in the area of  memory  that  is  bad.
Normally,  the  diagnostics  run  in the FLEX Utility Command Space.  If
they do not run, try to relocate them  and  test  the  operating  system
area.    Note,   however,   that  the  RUN  utility,  used  to  relocate
diagnostics, also runs in the Utility Command Space, so it too might not
run  correctly.  If it also fails, this is an important clue as to where
the bad memory is located.

     For  extremely  intermittent  or pattern sensitive problems, a last
resort measure is to run RANDOM for many  hours.   For  dynamic  memory,
DYNAMIC  should also be run for many hours.  If none of these techniques
uncover the problem, and the problem really is a memory problem, then it
would  require  specialized troubleshooting methods far beyond the scope
of these diagnostics.

                      If You Discover A Failure...

     When one of the diagnostics detects a memory failure, it prints  an
error  message.   What  to do next depends on your knowledge of computer
hardware.  If you do not perform your own  maintenance  and  repair,  it
would be best to contact the dealer or manufacturer of your computer for
advice.  They will probably tell you where  you  can  have  the  machine
serviced.   When  you take the machine for service, take along a copy of
the error message to show them.

     If  you  intend  to attempt repair yourself, you should be aware of
the possible causes of the failure.  A bad memory chip  is  usually  the
first  suspect,  but  there  is  more to computer memory than the memory
chips themselves.  Here is a list of possible sources of memory failure:

     1) Bad memory chip
     2) Bad contact between memory board and mother board
     3) Bad seating of memory chip in socket
     4) Corrosion on pins of memory board or memory chip
     5) Corrosion in the socket
     6) Cold solder joint
     7) Solder bridge (manufacturing defect)
     8) Broken trace on circuit board
     9) Chip select (address decode) circuitry on the board
    10) Data or address buffer chips on the board
    11) Refresh logic for dynamic memory
    12) Regulator or other components (resistors and capacitors)

If  CONVERGE  or  DYNAMIC was the test that discovered the problem, this
could be a clue as to the cause.  Recall that these two tests check  for
very   specific   problems,  usually  caused  by  failures  in  specific

                                  -12-



                                                   6809 FLEX DIAGNOSTICS

circuitry. We will deal with these later.

     Assuming  that  CONVERGE  or  DYNAMIC  was  not the diagnostic that
uncovered the error, the next step is to isolate the failure to a single
circuit board or memory chip.  The error message should give the address
that failed  and  the  bit  pattern  that  failed.   From  the  address,
determine  which memory board contains the failing memory chip.  Keep in
mind that some machines re-map memory so that the  address  printed  may
not  correspond  to  that  for  which  the  memory  board is wired.  The
manufacturer should have given you information on  how  the  mapping  is
accomplished,  enabling you to determine which memory board contains the
failing chip.  From the "expected" and "received" values printed in  the
message,  and  from  manufacturer's documentation on the organization of
the memory board, you should be able to determine which chip is suspect.

     Before  replacing  the  suspected  chip,  there  are two things you
should try.

  1) With  the  power off, move the memory board to another slot, if one
     is available.  The problem may be caused  by  bad  seating  of  the
     memory board on the mother board.  If the test still fails, then:

  2) If the memory chips are in sockets, switch the one that is  failing
     with  another  one.  Turn on the machine and rerun the diagnostics.
     One of three things should happen.

       a) If  a  failure occurs, it should be different because you have
          moved the suspected chip.  If the failure indicates  that  the
          bad  chip  has failed, it is the cause of the problem; replace
          it.

       b) If the diagnostics no longer fail, the problem might have been
          the seating of the chip in the socket.

       c) If the problem. stays the same, then the chip probably was not
          at fault.  A possibility may  be  dirt  or  corrosion  in  the
          socket, or a cold solder joint.

     If you have convinced yourself that the problem was due to a faulty
memory  chip, and you have replaced it, but the problem did not go away,
then try replacing it with another chip.  It might be the case that  the
spare chip used to replace the bad one was also bad.  If it still fails,
then the problem is probably not due to a chip.

     If  DYNAMIC  was  the test that failed, the problem could be in the
refresh logic.  This would definitely be indicated if more than one  bit
has  failed  in  the byte.  If only one bit has failed, it might be that
the memory chip is weak and has  difficulty  holding  the  data  between
refresh  cycles.   If only one bit has failed, then the first step is to
assume that the chip might be bad, and to follow the procedure  outlined
above.  If it becomes apparent that the chip is good, then you will have
to assume that the refresh logic is at fault.

                                  -13-



6809 FLEX DIAGNOSTICS

     If  CONVERGE  is  the diagnostic that has found the error, then the
problem could be located in the chip select logic on the  memory  board.
Memory  chips have been known to short out internally in such a way that
only a convergence test can detect the error, so the chip could still be
at  fault.   The troubleshooting techniques outlined above for bad chips
can be applied to convergence problems to determine if, indeed,  such  a
failure  within  a chip has taken place.  If the chip itself is not bad,
then the selection logic, or perhaps the address or  data  buffer  chips
are at fault.  It is also possible that a solder bridge exists, but this
would be a manufacturing  defect,  not  something  that  would  suddenly
appear  on  a  working  board.   If you have built the board from a kit,
however, solder bridges are something for which you should check.

                             General Hints

      Tracking down memory problems is not often a simple procedure.  In
many  cases,  it  is  like  solving a puzzle.  Intermittent failures are
probably the most baffling errors to uncover.  Here are some hints which
may help to uncover an intermittent error.

  1) Make use of as much  information  as  possible  from  the  original
     failure.   If you first suspected a memory problem because the data
     in a file was changed, then examine the changed  data  and  try  to
     determine which bit failed.

  2) Make use of idle machine time  to  run  diagnostics.   If  you  are
     taking  a  break  from  your  work  for a few minutes, let QUICK or
     RANDOM run while you are away from the machine.  You might  uncover
     an error and avoid trouble later on when the problem becomes worse.

  3) When you turn on the machine, run a few passes of QUICK or  RANDOM;
     just  to make sure that the shock of turning on the machine did not
     cause a weak or intermittent memory chip to fail completely.

  4) Keep  a  notebook near the machine which you can use to record your
     progress as you troubleshoot a problem.  Write down error  messages
     and  the  steps  you  took  to  try to isolate the problem.  If the
     problem is intermittent, it  might  return  at  some  time  in  the
     future,  and the notebook will tell you what steps you have already
     taken in trying to find the problem.  Extremely intermittent errors
     occur  so  far  apart  that you should not trust your own memory in
     trying to recall what you did in the past.

  5) If you do have a very intermittent problem, such that you have only
     one message from a diagnostic, try switching that memory chip  with
     another  one  on the board (if they are in sockets).  The next time
     that you get an error, which may be many days away, check to see if
     the  new  error  points  to the chip that was moved.  If so, it was
     probably bad and you should replace it.

                                  -14-



                        MEMORY DIAGNOSTIC DESCRIPTIONS

                                  -15-



6809 FLEX DIAGNOSTICS

                                  -16-



                                                   6809 FLEX DIAGNOSTICS

Program Name: CONVERGE
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

CONVERGE is a form of convergence test, used primarily to detect address
or data lines which are shorted together.

Calling Sequence:

     CONVERGE,starting-address,ending-address

     where:

        "starting-address" is the lowest address  in  the  block  to  be
        tested.

        "ending-address" is the highest  address  in  the  block  to  be
        tested.   If  none  is specified, the FLEX "Memory End" value is
        used.

        If no arguments are specified, the block from "0000" through the
        FLEX "Memory End" value is tested.

METHOD:

Each pass of CONVERGE is divided into two major sections, an  intra-byte
check and an inter-byte check.

The intra-byte check determines if other bits in  a  byte  change  state
when  they are not specifically modified.  The intra-byte check operates
by performing a "walking one" test on each byte.  The right-most bit  of
each  byte  is  set to a "1" while the rest of the byte is cleared.  The
bytes are then checked and any errors reported.  The next  bit  in  each
byte  is  then  tested  in the same way.  After all eight bits have been
tested, a plus sign is printed and the second section of the  test,  the
inter-byte test, is performed.

The inter-byte test determines if data changes in some byte  other  than
the  one being addressed.  CONVERGE uses a binary searching algorithm to
reduce the time for the inter-byte test.  At the start of the test,  the
block  of  memory  to  be  tested is divided in half.  The first half is
cleared and the second half is set to an "all ones"  pattern  (hex  FF).
The  first  half is then checked for any bits having been set due to the
writing of the "FF" pattern in the second half.  If none are  found,  it
is  assumed that changing the  second half of the block has no effect on
the first half.  The roles of the two  halves  are  then  reversed,  the
second  half  being  cleared  and the first half being set to "FF".  The
second half is then checked.  If no errors are detected, it  is  assumed
that  the  two  halves  do  not  affect each  other.   Each half is then
separately tested, i.e. each half is itself divided into two  parts  and

                                  -17-



6809 FLEX DIAGNOSTICS

the  test  performed  on  these halves.  The test continues, recursively
testing smaller segments of memory which have already been shown  to  be
independent  of the rest of the memory block.  When the entire block has
been tested, a minus sign is printed and the test starts over  with  the
intra-byte test.

When an error is detected in  the  second  part,  the  inter-byte  test,
CONVERGE  attempts  to isolate the error.  The byte that was in error is
cleared.  Then that half of memory that was set to "FF" is again set  to
"FF"  except  that  the  byte  that failed is checked after each byte is
stored.  If the error recurs, the last address which was set to "FF"  is
assumed  to  be the one that caused the error.  Both the failing address
and the last address which was changed are reported.  If the error  does
not  recur,  the  error is reported as an "intermittent" error, and only
the address that changed is known and reported.

The  test  repeats until  stopped by the user. The keyboard is monitored
by the diagnostic,  and  whenever  any  character  is  typed,  the  test
terminates, returning to the operating system.

MESSAGES:

ERROR IN ADDRESS
     An  invalid  hexadecimal   character   was   detected   in   either
     "starting-address" or "ending-address".  The test is aborted.

"CONVERGE" IS IN THE TEST AREA
     The  diagnostic  "CONVERGE"  resides  in  the block of memory being
     tested. The test is aborted.

STACK IS IN TEST AREA
     The run-time stack used by CONVERGE is in the block of memory being
     tested. The test is aborted.

LAST < FIRST
     "Ending-address"  is  less  than  "starting-address".  The  test is
     aborted.

FLEX ASSUMED OVERWRITTEN
     The block of memory being tested contains all or part of  the  FLEX
     operating  system.  If the diagnostic is stopped from the keyboard,
     control will go to the monitor instead of FLEX.

ADDRESS xxxx, EXPECTED: nnnnnnnn, RECEIVED: nnnnnnnn
     An error was detected while testing the  byte  at  address  "xxxx".
     The  data  pattern  stored is that indicated by the EXPECTED value.
     The incorrect data pattern read  back  is  that  indicated  by  the
     RECEIVED  value.  Both values (nnnnnnnn) are given in binary.  This
     error  message  is  produced  by  the  intra-byte  section  of  the
     diagnostic.

                                  -18-



                                                   6809 FLEX DIAGNOSTICS

STORE ADDRESS: xxxx, READ ADDRESS: xxxx, DATA: nnnnnnnn
     When  "FF"  was stored in the address given by "store address", the
     value at "read address" changed from zero to that given by  "data".
     The  data  value  is  reported  in  binary.   This error message is
     reported by the inter-byte section of the diagnostic.

INTERMITTENT ERROR, ADDRESS: xxxx DATA: nnnnnnnn
     An error was detected during the inter-byte section  of  the  test,
     but the error could not he isolated.  The data at "address" changed
     from zero to that specified by "data".  The data value is given  in
     binary.

TESTING COMPLETED
     The diagnostic has terminated, returning to the system.

REMARKS:

CONVERGE  takes 5 seconds to test 4K (4096 bytes) of memory with a 1 MHz
system clock.  One-third of this time is due to the intra-byte test, and
two-thirds  is  due  to the inter-byte test.  For 32K, the test takes 40
seconds per pass.

                                  -19-



6809 FLEX DIAGNOSTICS

                                  -20-



                                                   6809 FLEX DIAGNOSTICS

Program Name: DYNAMIC
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

DYNAMIC tests a block of dynamic RAM for bit  dropout  under  conditions
such  that the memory is not accessed for a period of time.  Under these
conditions, only the hardware refresh logic keeps the data current.

Calling Sequence:

     DYNAMIC,starting-address,ending-address

     where:

        "starting-address" is the lowest address  in  the  block  to  be
        tested.

        "memory size" is a decimal number indicating  the  size  of  the
        block being tested in terms of "K" (1024 bytes); e.g. 16 implies
        16K of memory (16*1024 bytes).  If  none  is  specified,  32  is
        assumed (311-768 bytes).

        If no arguments are specified, 32K starting at "0000" is tested.

METHOD:

When invoked, DYNAMIC writes an "all ones" pattern (hex FF) in the block
being  tested.   The  data is checked and any errors reported.  The test
then delays approximately 10 seconds and checks  the  data  again.   The
data  pattern  is  never  rewritten.   If  an  error  is detected, it is
reported, and the failing byte is again set to hex FF.   The  test  runs
until  stopped  by  the  user.   While  delaying,  DYNAMIC  monitors the
keyboard.  If any character is entered, the test terminates immediately,
returning to the operating system.

MESSAGES:

ERROR IN ADDRESS
     The "starting-address" was not a  legal  hexadecimal  number.   The
     test is aborted.

ERROR IN SIZE
     A  non-decimal  digit  was  detected in "memory size".  The test is
     aborted.

"DYNAMIC" IS IN THE TEST AREA
     The diagnostic "DYNAMIC" resides  in  the  block  of  memory  being
     tested.  The test is aborted.

                                  -21-



6809 FLEX DIAGNOSTICS

STACK IS IN TEST AREA
     The  run-time stack used by DYNAMIC is in the block of memory being
     tested. The test is aborted.

FLEX ASSUMED OVERWRITTEN
     The block of memory being tested contains all or part of  the  FLEX
     operating  system.  If the diagnostic is stopped from the keyboard,
     control will go to the monitor instead of FLEX.

ADDRESS xxxx, DATA: nnnnnnnn
     An error was detected while testing the  byte  at  address  "xxxx".
     The data pattern read was "nnnnnnnn" (in binary).  The data pattern
     written was an "all ones" pattern (11111111 binary).

TESTING COMPLETED
     The diagnostic has terminated, returning to the system.

REMARKS:

The 10 second delay is a software delay  based  on  a  1  megahertz  CPU
clock.  The delay itself is not critical, and no changes are required if
a faster or slower CPU is used.

                                  -22-



                                                   6809 FLEX DIAGNOSTICS

Program Name: QUICK
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

QUICK performs a zeroes and ones check on a block of memory.  This  test
is most frequently used as a quick check for solid failures.

Calling Sequence:

     QUICK,starting-address,ending-address

     where:

        "starting-address"  is  the  lowest  address  in the block to be
        tested.

        "ending-address"  is  the  highest  address  in  the block to be
        tested.  If none is specified, the FLEX "Memory  End"  value  is
        used.

        If no arguments are specified, the block from "0000" through the
        FLEX "Memory End" value is tested.

METHOD:

On  each  odd-numbered  pass, QUICK zeroes out the block of memory being
tested.  Each byte is then complemented (making it hex FF) and  checked.
Any  error  is reported.  The byte is then cleared  and the next byte is
processed.

On  even-numbered  passes, the block of memory being tested is set to an
"all ones" pattern (hex FF).  Each byte is cleared, checked,  and  reset
to all ones with any error being reported.

The test runs until stopped by the user.  After each pass, the  keyboard
is   checked.   If  any  character  was  entered,  the  test  terminates
immediately, returning to the operating system.

MESSAGES:

ERROR IN ADDRESS
     An   invalid   hexadecimal   character   was   detected  in  either
     "starting-address" or "ending-address".  The test is aborted.

"QUICK" IS IN THE TEST AREA
     The diagnostic "QUICK" resides in the block of memory being tested.
     The test is aborted.

                                  -23-



6809 FLEX DIAGNOSTICS

STACK IS IN TEST AREA
     The  run-time  stack  used by QUICK is in the block of memory being
     tested.  The test is aborted.

LAST < FIRST
     "Ending-address" is  less  than  "starting-address".  The  test  is
     aborted.

FLEX ASSUMED OVERWRITTEN
     The  block  of memory being tested contains all or part of the FLEX
     operating system.  If the diagnostic is stopped from the  keyboard,
     control will go to the monitor instead of FLEX.

ADDRESS xxxx, EXPECTED: nnnnnnnn, RECEIVED: nnnnnnnn
     An  error  was  detected  while testing the byte at address "xxxx".
     The data pattern stored is that indicated by  the  EXPECTED  value.
     The  incorrect  data  pattern  read  back  is that indicated by the
     RECEIVED value.  Both values (nnnnnnnn) are given in binary.

TESTING COMPLETED
     The diagnostic has terminated, returning to the system.

REMARKS:

QUICK takes approximately 0.64 seconds to test 4K (4096 bytes) of memory
on a 1 MHz machine.  Larger blocks take a proportionately longer time.

For parallel-organized memory, QUICK is a "walking  zero"  and  "walking
one"  test  that  checks the eight parallel memory chips simultaneously.
(See  "Introduction  to  Memory  Diagnostics"  for   a   definition   of
"parallel-organized memory".)

                                  -24-



                                                   6809 FLEX DIAGNOSTICS

Program Name: RANDOM
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

RANDOM  tests  a block of memory using pseudo-random bit patterns as the
test data.

Calling Sequence:

     RANDOM,starting-address,ending-address

     where:

        "starting-address" is the lowest address  in  the  block  to  be
        tested.

        "ending-address" is the highest  address  in  the  block  to  be
        tested.   If  none  is specified, the FLEX "Memory End" value is
        used.

        If no arguments are specified, the block from "0000" through the
        FLEX "Memory End" value is tested.

METHOD:

On each pass, RANDOM fills the  memory  block  being  tested  with  data
patterns  generated  by  a  pseudo-random number generator.  The data in
each memory location is then checked against  the  pattern  written  and
discrepancies  are  reported.  A fresh sequence of data patterns is used
for each pass.  The test runs until stopped by  the  user.   After  each
byte  is  written  or  checked,  the  keyboard  is  interrogated.  If  a
character has been entered, the diagnostic terminates, returning to  the
operating system.

MESSAGES:

ERROR IN ADDRESS
     An  invalid  hexadecimal  character   was    detected   in   either
     "starting-address" or "ending-address".  The test is aborted.

"RANDOM" IS IN THE TEST AREA
     The  diagnostic  "RANDOM"  resides  in  the  block  of memory being
     tested.  The test is aborted.

STACK IS IN TEST AREA
     The run-time stack used by RANDOM is in the block of  memory  being
     tested.  The test is aborted.

                                  -25-



6809 FLEX DIAGNOSTICS

LAST < FIRST
     "Ending-address"  is  less  than  "starting-address".   The test is
     aborted.

FLEX ASSUMED OVERWRITTEN
     The block of memory being tested contains all or part of  the  FLEX
     operating  system.  If the diagnostic is stopped from the keyboard,
     control will go to the monitor instead of FLEX.

ADDRESS xxxx, EXPECTED: nnnnnnnn, RECEIVED: nnnnnnnn
     An error was detected while testing the  byte  at  address  "xxxx".
     The  data  pattern  stored is that indicated by the EXPECTED value.
     The incorrect data pattern read  back  is  that  indicated  by  the
     RECEIVED value.  Both values (nnnnnnnn) are given in binary.

TESTING COMPLETED
     The diagnostic has terminated, returning to the system.

REMARKS:

RANDOM takes approximately 1.8 seconds to test 4K (4096 bytes) of memory
on a 1 MHz machine.  Larger blocks take a proportionately longer time.

The pseudo-random number generator in the diagnostic does not need to be
initialized.  RANDOM uses memory garbage as the  seed,  and  forces  the
seed to be non-zero.

                                  -26-



                                                   6809 FLEX DIAGNOSTICS

Program Name: WALK0
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

WALK0  performs a "walking zero" test on a block of memory.  At any time
during the running of the test, only one bit  in  the  entire  block  of
memory being tested is a zero.

Calling Sequence:

     WALK0,starting-address,ending-address

     where:

         "starting-address"  is  the  lowest  address  in the block to be
         tested.

         "ending-address"  is  the  highest  address  in  the block to be
         tested.  If none is specified, the FLEX  "Memory End"  value  is
         used.'

         If no arguments are specified, the block from "0000" through the
         FLEX "Memory End" value is tested.

METHOD:

When  invoked,  WALK0 writes the entire block to be tested with  an "all
ones" pattern (hex FF).  Starting at the lowest address, the  right-most
bit of the byte is set to zero and the byte rewritten.  The byte is then
checked.  If correct, the bit that was cleared is set back to a one  and
the  next  bit  in  the  byte  is  cleared and the byte rewritten.  This
process continues until  all  8  bits  are  checked.   If  an  error  is
detected,  it  is  reported  and the next bit is processed.  The process
then resumes with the next byte in memory.  Thus,  the  cleared  bit  is
"walked"  through the entire block being tested.  After the entire block
has been tested, a plus sign is printed and the test  repeats,  starting
with  the  lowest byte in the block.  The test runs until stopped by the
user. After each byte  is  tested,  the  keyboard  is  checked.    If  a
character  has been entered, the diagnostic terminates, returning to the
operating system.

MESSAGES:

ERROR IN ADDRESS
     An    invalid  hexadecimal   character   was   detected  in  either
     "starting-address" or "ending-address".  The test is aborted.

                                  -27-



6809 FLEX DIAGNOSTICS

"WALK0" IS IN THE TEST AREA
     The diagnostic "WALK0" resides in the block of memory being tested.
     The test is aborted.

STACK IS IN TEST AREA
     The  run-time  stack  used by WALK0 is in the block of memory being
     tested.  The test is aborted.

LAST < FIRST
     "Ending-address" is  less  than  "starting-address".  The  test  is
     aborted.

FLEX ASSUMED OVERWRITTEN
     The  block  of memory being tested contains all or part of the FLEX
     operating system.  If the diagnostic is stopped from the  keyboard,
     control will go to the monitor instead of FLEX.

ADDRESS xxxx, EXPECTED: nnnnnnnn, RECEIVED: nnnnnnnn
     An  error  was  detected  while testing the byte at address "xxxx".
     The data pattern stored is that indicated by  the  EXPECTED  value.
     The  incorrect  data  pattern  read  back  is that indicated by the
     RECEIVED value.  Both values (nnnnnnnn) are given in binary.

TESTING COMPLETED
     The diagnostic has terminated, returning to the system.

REMARKS:

WALK0 takes approximately 3.5 seconds to test 4K (4096 bytes) of  memory
on a 1 MHz machine.  Larger blocks take a proportionately longer time.

WALK0 may be  used  regardless  of  the  organization  of  memory.   For
parallel-organized  memory,  however,  QUICK  is  a faster "walking bit"
test.  (See "Introduction to Memory Diagnostics"  for  a  definition  of
parallel-organized memory".)

                                  -28-



                                                   6809 FLEX DIAGNOSTICS

Program Name: WALK1
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

WALK1  performs  a "walking one" test on a block of memory.  At any time
during the running of the test, only one bit  in  the  entire  block  of
memory being tested is a one.

Calling Sequence:

     WALK1,starting-address,ending-address

     where:

        "starting-address"  is  the  lowest  address  in the block to be
        tested.

        "ending-address"  is  the  highest  address  in  the block to be
        tested. If none is specified, the  FLEX  "Memory End"  value  is
        used.

        If no arguments are specified, the block from "0000" through the
        FLEX "Memory End" value is tested.

METHOD:

When  invoked,  WALK1  writes the entire block to be tested with zeroes.
Starting at the lowest address, the right-most bit of the byte is set to
one  and the byte rewritten.  The byte is then checked.  If correct, the
bit that was set is cleared and the next bit in the byte is set to a one
and  the  byte  rewritten.   This process continues until all 8 bits are
checked.  If an error is detected, it is reported and the  next  bit  is
processed.   The  process  then  resumes  with  the next byte in memory.
Thus, the one bit is "walked" through the  entire  block  being  tested.
After  the  entire  block has been tested a plus sign is printed and the
test repeats, starting with the lowest byte in the block.  The test runs
until  stopped  by the user.  After each byte is tested, the keyboard is
checked.  If a character has been entered,  the  diagnostic  terminates,
returning to the operating system.

MESSAGES:

ERROR IN ADDRESS
     An  invalid  hexadecimal   character   was   detected   in   either
     "starting-address" or "ending-address".  The test is aborted.

                                  -29-



6809 FLEX DIAGNOSTICS

"WALK1" IS IN THE TEST AREA
     The diagnostic "WALK1" resides in the block of memory being tested.
     The test is aborted.

STACK IS IN TEST AREA
     The run-time stack used by WALK1 is in the block  of  memory  being
     tested.  The test is aborted.

LAST < FIRST
     "Ending-address" is  less  than  "starting-address".  The  test  is
     aborted.

FLEX ASSUMED OVERWRITTEN 
     The block of memory being tested contains all or part  of  the FLEX
     operating  system.  If the diagnostic is stopped from the keyboard,
     control will go to the monitor instead of FLEX.

ADDRESS xxxx, EXPECTED: nnnnnnnn, RECEIVED: nnnnnnnn
     An error was detected while testing the  byte  at  address  "xxxx".
     The  data  pattern  stored is that indicated by the EXPECTED value.
     The incorrect data pattern read  back  is  that  indicated  by  the
     RECEIVED value.  Both values (nnnnnnnn) are given in binary.

TESTING COMPLETED
     The diagnostic has terminated, returning to the system.

REMARKS:

WALK1  takes approximately 3.5 seconds to test 4K (4096 bytes) of memory
on a 1 MHz machine.  Larger blocks take a proportionately longer time.

WALK1  may  be  used  regardless  of  the  organization  of memory.  For
parallel-organized  memory,  however,  QUICK  is  a faster "walking bit"
test.  (See "Introduction to Memory Diagnostics"  for  a  definition  of
parallel-organized memory".)

                                  -30-



                INTRODUCTION TO DISK DIAGNOSTICS AND UTILITIES

                                  -31-



6809 FLEX DIAGNOSTICS

                                  -32-



                                                   6809 FLEX DIAGNOSTICS

             INTRODUCTION TO DISK DIAGNOSTICS AND UTILITIES

     The diskette diagnostics and utilities in this  package  provide  a
mechanism  for  detecting  errors on a FLEX™ formatted disk and, in some
cases, retrieving the damaged  or  lost  data.   The  programs  in  this
package  will  not  perform  miracles,  however.   As  with  any  set of
diagnostics, there are probably some problems that they will not be able
to  detect.   It is hoped that these programs will be able to detect the
more common problems, and provide enough warning to  the  user  so  that
some  of  the  data affected may be salvaged.  The user should be aware,
however, that there are some types of failures from which data cannot be
recovered.

     This introduction will discuss the structure of  a  FLEX  disk  and
some  of  the problems that may show up.  Following this introduction is
documentation on each of the programs.  Lastly, several case studies are
analyzed to give a feeling as to how to use the various programs in this
package.

                            Disks in General

    The most common di.sk storage available on microcomputer systems  is
the  "floppy disk".  These are also called "flexible disks" because they
are thin and will bend easily.  There are also disks called "hard disks"
which  contain rigid plates.  Hard disks are usually quite expensive and
can hold large amounts of data.

     A  disk  is  usually  organized  into  "tracks" and "sectors".  The
tracks may be compared to the rings in an archery target  in  that  they
are  concentric  circles  on  the  disk.  The number of tracks on a disk
varies with the size of the  disk;  smaller  disks  usually  have  fewer
tracks.    Tracks  are numbered sequentially, starting at 0.  Each track
is divided into sections called "sectors".  The sectors are the areas in
which  data  is stored.  The number of-sectors in a track depends on the
number of bytes that are going to be stored in  each  sector;  the  more
bytes  that are stored in a sector, the fewer sectors that will fit in a
track.

     Information  is  written  to  or read from the disk by a read/write
head in the disk drive.  The  head  is  at  the  end  of  an  arm  which
positions it over the proper track.  As the disk spins, the sectors pass
under the head of the disk drive.  To read  or  write  information,  the
disk  drive  waits  for the right sector to come under the head, then it
reads or writes the data into the sector.

     The  method  that  the  disk drive uses to determine when the right
sector is under the head depends on the disk and the drive.  Some  disks
are   "soft-sectored",   others  are  "hard-sectored".   "Hard-sectored"
diskettes have holes punched in them, one corresponding to the beginning
of  each sector.  A separate hole, called the "index mark" indicates the
beginning of the  track.   "Soft-sectored"  diskettes  have  the  sector
--------------------
FLEX is a trademark of Technical Systems Consultants, Inc.

                                  -33-



6809 FLEX DIAGNOSTICS

number, and other information, recorded magnetically in an address field
at  the front of each sector.  The disk drive reads each sector until it
finds the one that it wants.  There  is  usually  only  one  hole  in  a
soft-sectored disk; the one that marks the start of a track.

     It is important to note that if the information that is written  in
front  of  the  sector  is destroyed, the disk drive will not be able to
find the sector.  Some disk controllers are smart enough to detect  this
case,  others  are  not.   Those  that do detect it return an error that
indicates that the sector could not be located.  Those controllers  that
cannot  detect  such  a  condition  will continue to look for the sector
until the machine is reset.

     All  of  the  information that is written to a disk is checksummed,
and the checksum is written on the disk  right  after  the  information.
When  a  sector  is  read,  the  data  that  comes  off  of  the disk is
checksummed again.  If the checksum just computed does  not  match  that
which  was  recorded  on  the  disk, a checksum error (also called a CRC
error) exists. Checksum errors indicate that the data  was  not  written
correctly, or can not be read correctly.

                        Structure of a FLEX Disk

     Some information about the structure of a FLEX disk is given in the
"FLEX Advanced Programmer's  Guide".   This  information  is  summarized
below.

     A FLEX disk is given its structure by the  initialization  program,
NEWDISK.  This program writes the address fields in front of the sectors
of the diskette and  defines  the  size  of  the  sectors  (256  bytes).
Sectors in each track are numbered starting at 1.

     The sectors on a FLEX diskette  are  often  indicated  by  a  "disk
address", also called a "sector address".  This address is a hexadecimal
number consisting of the number  of  the  track  containing  the  sector
concatenated  with  the  number  of  that  sector within the track.  For
example, the disk address 030A means "track 03, sector 0A".

     After  initialization, the sectors on all of the tracks, except the
first track, are linked together into a chain.  This is accomplished  by
reserving  the  first  two  bytes  of each sector as a "link field" that
contains a pointer to another sector.   The  next  two  bytes  are  also
reserved.  They are used to hold a record number when the sector is part
of a file.

     The  first  track  on a FLEX disk, track 0, is special.  This track
contains the boot  sectors,  the  system  information  sector,  and  the
directory.   The  boot sectors contain a small program that fs read into
memory when the system is brought up.  The boot  sectors  are  different
from all of the other sectors in that they do not have a link field or a
record number field.  On a standard FLEX  disk,  the  boot  sectors  are
sectors 1 and 2 on track 0.

                                  -34-



                                                   6809 FLEX DIAGNOSTICS

      The system information sector is in sector  3  of  track  0.  This
sector  contains  the  name of the diskette, number of the diskette, and
the date  that  the  diskette  was  initialized.   Also  in  the  system
information  sector are the sector addresses of the beginning and end of
the free chain and the number of sectors in the free chain.  Lastly, the
largest  value  for  a  track  number and the largest value for a sector
number within a track are  stored  here  for  reference  purposes.   The
actual  locations  of  this  information  in  the sector is given in the
following table:

                Byte Number         Content

                  00-15             Zeroes
                  16-26             Disk Name
                  27-28             Volume Number
                  29-30             Start of free chain
                  31-32             End of free chain
                  33-34             Size of free chain
                  35-37             Initialization Date
                  38                Maximum Track Number
                  39                Maximum Sector Number
                  40-255            Reserved for future expansion

     Track 0 sector 4 is not used by FLEX,  being  reserved  for  future
expansion.   The  disk  directory  starts  at  sector  5 on track 0, and
initially is composed of the rest  of  the  sectors  on  track  0.   The
directory  sectors  are  linked together, the same as in the free chain.
There are no record numbers in the  directory,  however.    A  directory
sector has the following format:

                Byte Number         Content

                00-01               Sector link
                02-15               Zeroes
                16-39               Directory Entry
                40-63               Directory Entry
                64-87               Directory Entry
                88-111              Directory Entry
                112-135             Directory Entry
                136-159             Directory Entry
                160-183             Directory Entry
                184-207             Directory Entry
                208-231             Directory Entry
                232-255             Directory Entry

The  description  of  an individual directory entry is given in the FLEX
Advanced Programmer's Guide.

     Once  a  sector  becomes  part  of  a  file,  the sector link field
contains a pointer to the next sector in the file.  If the link is zero,
the  sector  is  the last sector in the file.  The sectors in a file are
numbered starting at 1.  This number is kept in the record number  field
of  the  sector  (bytes  2-3).   The remaining 252 bytes (4-255) contain
data.

                                  -35-



6809 FLEX DIAGNOSTICS

                                 Random Files

     A FLEX random file is structured like an ordinary sequential  file.
Each  sector  contains a sector link and a record number, plus 252 bytes
of data.  The difference is that there are two sectors in front  of  the
first  data sector that contain a compressed ordered list of the sectors
in the file.  These two sectors are called the "file  sector  map".   By
looking  at  the  sector  map,  FLEX  can quickly determine which sector
contains which record.  The  two  map  sectors  themselves  have  record
numbers of zero.

     The information in  the  map  sectors  is  composed  of  three-byte
fields.   In  each  field, the first two bytes are a disk address (track
and sector), and the next byte is a sector count byte.  The  count  byte
specifies  the  number  of  sectors  in  the  file starting at that disk
address, that are  in  sequence.   If  all  three  bytes  are  zero,  it
indicates  that the end of the map has been reached.  How the sector map
works may be best explained through the use of an example.  Assume  that
the sector map of a file looks like this:

                                02 06 03
                                0F 06 01
                                03 0E 05
                                00 00 00

The leftmost two bytes in each of the above lines are the disk  address,
and  the  rightmost  byte is the sector count.  The first line, 02 06 03
means: "starting at disk address 0206, there are 3 sectors that  are  in
the  file".  These would be sectors 0206, 0207, and 0208.  The next line
says that starting at 0F06 there is one sector  that  is  in  the  file.
This,  of  course, would be 0F06 itself.  The third line says that there
are 5 sectors starting at 030E.  If we assume that there are 15  sectors
in  a  track  (01  through  0F), then these sectors would be 030E, 030F,
0401, 0402, and 0403.  The last line, being all zeroes,  indicates  that
the  end  of  the  file  has  been  reached.   Summing this up, the file
occupies the sectors 0206, 0207, 0208, 0F06, 030E, 030F, 0401, 0402, and
0403, in that order.  Thus, if we want sector 6 in the file, we would go
to sector 030F.

     To  create a random file, it is necessary to set a flag in the file
control block immediately after opening the file for writing, and before
writing  any  data  to it.  The exact procedure is described in the FLEX
Advanced Programmer's Guide.

                         How FLEX Handles Files

     After a disk has been initialized, all of the  sectors  are  linked
together in the free chain.  When a file is created, sectors are removed
from the head of the free chain and assigned to the  file  as  they  are
needed.   When  a file is deleted, the chain of sectors that were in the
file is concatenated to the end of the free chain.

                                  -36-



                                                   6809 FLEX DIAGNOSTICS

     As  mentioned  earlier,  the system information sector contains the
disk addresses of the beginning and end of the free chain,  as  well  as
its  size.  The information in this sector is not updated each and every
time a sector is removed from the free chain and  assigned  to  a  file.
doing  this  would  result  in  a  lot  of overhead when files are being
written.  Instead, this information is kept in memory and updated there.
The  system  information sector on the disk is updated when FLEX returns
th command mode and issues the plus signs for  a  prompt.   it  is  also
updated  whenever the FMS "close all files" routine is called.  For this
reason, one should not change a disk in the middle of a program, even if
the files that were being written have been closed, since the free chain
information has not been updated on the disk.

                         Types of Disk Problems

     There are three broad classes of  disk  problems:  hardware-caused,
software-caused,  and human-caused.  Hardware-caused problems may result
in the inability to read of  write  a  disk,  or  the  changing  of  the
information  on  the  disk.   Software-caused problems may result in the
changing of information, but very rarely do they result in the inability
to  read of write a disk.  (Of course, we are assuming that the software
that drives the disk is working correctly.)  Human-caused  problems  are
the  result  of  the  user  doing something that is ill-advised, such as
resetting the machine while a file is being  written.   Such  an  action
could  cause  the integrity of the disk to be compromised.  The links in
the file chains may be wrong; the directory information about a file may
be inaccurate; of the free chain may disappear.

     The inability to read or write a disk may be  caused  by  the  disk
itself,  the  disk drive, or the disk controller.  Isolating the problem
is a simple process of elimination.  If only one disk can not  be  read,
then the disk is probably at fault.  If the disk will work in one drive,
but not another, then the drive may have a  problem.   If  none  of  the
disks and drives work, then the problem is probably in the controller or
cable from the controller to the disk drives.

     If only a few sectors on a disk cannot be read or written, then the
disk itself has some bad spots.  Modern  disk  manufacturing  techniques
produce  high  quality  media,  but it is possible for some bad spots to
appear.  floppy disks are prone to  wear,  since  the  disk  drive  head
actually  is  in contact with the diskette.  In hard disks, however, the
head rides a cushion of air above the surface of the disk, so  that  the
disk surfaces experience no wear.  The majority of failures in hard disk
systems are electronic failures.

     The  most  common  problems with disk is that of bad sectors, those
that get checksum errors.  Normally, FLEX detects bad sectors  when  the
disk  is initialized, at which time they are removed from the free chain
and not made available for use in a file.   Sometimes,  however,  a  bad
spot  may be pattern sensitive.  Such a bad spot may appear to be a good
sector during initialization, but gets a checksum error when used  in  a
file.   It  is  also possible for a sector to become bad due to physical
damage to the disk or due to wear.  Handling the various types of errors

                                  -37-



6809 FLEX DIAGNOSTICS

is discussed further in the Case Studies section of this manual.

     Software-caused  problems  usually  involve   the   alteration   or
destruction  of  data in a file.  Such problems are sometimes the result
of programming errors, especially in  assembly  language  programs  that
read  and  write  files.   It  is good practice to test such programs on
scratch disks so that no valuable data is lost if  a  programming  error
destroys  the data on the disk.  Sometimes the directory, free chain, or
the file chains may be destroyed.  This type  of  problem  is  called  a
"structural" problem, since the normal structure of a FLEX disk has been
damaged.  Recovering most of the data from structurally damaged disks is
usually  possible.   However,  the  structural  damage usually cannot be
easily repaired.  The best way to recover from structural damage  is  to
copy  the  data to another disk and re-initialize the bad one.  Handling
structural errors is also discussed in the Case Studies section of  this
manual.

     Human-caused problems are usually structural problems.  Most-of the
problems  occur when something is done while a file is being written, or
is open for writing.  Resetting the  machine,  opening  the  disk  drive
door,  or  removing  the  diskette  at  the  wrong  time  can  result in
structural damage.  Sometimes,  however,  there  is  no  choice.   If  a
program  is running wild, or the user suddenly realizes that the program
is writing on the wrong disk, there may be no other alternative than  to
take  drastic  action to stop the program.  If such action is taken, the
next step should be to run some tests on the diskette to make sure  that
no  damage was done.  Some structural problems do not show up until long
after they were caused.

                                  -38-



                                                   6809 FLEX DIAGNOSTICS

                      THE DISK UTILITIES IN THIS PACKAGE

     There are 10 programs in this package  for  use  in  isolating  and
recovering from problems.  In this section, we will quickly look at each
of them.

     Three programs (TEST, VALIDATE, and FILETEST) are diagnostics which
check for bad spots and structural problems.  TEST is  a  fast  checkout
program for detecting bad spots.  FILETEST also looks for bad spots, but
it can tell you in which file the bad  spot  is  located;  TEST  cannot.
However,  FILETEST  runs  more  slowly  than  TEST.  VALIDATE checks for
structural problems, such as intersecting files or discrepancies between
the file and the information about the file that is in the directory.

     Four programs (RAWCOPY, REBUILD, RECOVER, and  UNDELETE)  are  data
recovery  utilities.   Two  of  these,  REBUILD  and  RECOVER,  are  for
recovering data from a disk  when  the  directory  has  been  destroyed.
REBUILD  attempts to recover all of the files on the disk, while RECOVER
will retrieve only selected files.  RECOVER does require that  the  user
know  the  starting  track  and sector of the file.  RAWCOPY will copy a
file that has a checksum error in it.  The data in the bad  sector  will
be damaged, but it is assumed that the user can repair the damage once a
readable copy is made.  UNDELETE can recover files from the free  chain,
assuming that they have not been overwritten by new files.

     Of the remaining three programs, COPYR is used to restore the  file
sector  map  to  a  random  file  after  the  file has been recovered by
REBUILD.  It can also be used to put a file sector map on any sequential
file.   FLAW is used to remove bad sectors from the free chains. This is
particularly useful when a sector is intermittent; that is,  it  is  not
detected  by  NEWDISK,  but  it  gives errors when it is used in a file.
Lastly, EXAMINE is a general read/write/modify utility that can  operate
on  individual sectors.  With this program, it is possible to change any
sector on a disk.

     Knowing when to use the various programs will cone with experience.
The Case Studies section of  this  manual  gives  examples  on  how  the
various  programs  can  be  used  with each other to isolate and correct
problems.

                           System Dependencies

     All of the disk diagnostics  and  utilities  in  this  package  are
written  to  run under the FLEX Operating System.  It is not possible to
run these programs under other operating systems.

     Some  the  the  programs  read the system information sector to get
information about the disk.  In particular, they want to know the number
of tracks on the disk and the number of sectors in a track.  In order to
protect against the possiblity of  working  with  bad  information,  the
values  that  are  read  from the system information sector are compared
against a table of acceptable values.

                                  -39-



6809 FLEX DIAGNOSTICS

     The  table consists of several two-byte entries.  The first byte is
the number of the last track on the disk, and the  second  byte  is  the
number  of  the  last  sector in a track.  For double density diskettes,
this is the number of the last sector in a data track, not the directory
track.   (The directory track on a double density diskette is written in
single density.) The following is a description of the  entries  in  the
table.

               Largest  Largest
                Track   Sector   Description

                 39       10     5" Single-sided, 40 tracks
                 39       20     5" Double-sided, 40 tracks
                 34       10     5" Single-sided, 35 tracks
                 34       20     5" Double-sided, 35 tracks
                 76       15     8" Single-sided, single-density
                 76       26     8" Single-sided, double-density
                 76       30     8" Double-sided, single-density
                 76       52     8" Double-sided, double-density
                255      255     Hard Disk

The  table is terminated by three zero bytes, the first two of which are
available  for  the  user  to  add  information  about  a   non-standard
configuration.  The last zero byte should not be changed.  This table is
located at location 0003 in EXAMINE and RAWCOPY, and at location C103 in
TEST and REBUILD.  The other diagnostics do not have this table.

     If the maximum track and sector values do not correspond to one  of
the  entries  in  the  table,  it is assumed that the data in the system
information sector is incorrect.  When this happens, the program prompts
the  user  for information about the disk.  The program will also prompt
for information if the system information sector cannot be read  because
of a disk error.   The following is a description of the prompts.

   MAXIMUM TRACK/SECTOR READ: tt/ss ARE THESE ACCEPTABLE? (Y/N)
        The values read from the system information sector were "tt" and
        "ss".  There was no corresponding entry in the table.  If  these
        are  the correct values, type "Y"; if not, type "N".   If "Y" is
        typed, these values will be accepted  as  correct.  If   "N"  is
        typed, additional prompts will follow.

   HARD DISK OR FLOPPY DISK (H/F)
        If  the  disk  being tested is a hard disk, type "H"; if it is a
        floppy disk, type "F".  If it is a hard disk, the maximum values
        will  be  set  to  255 each.  If it is a floppy disk, additional
        prompts will follow.

   DISKETTE SIZE (5/8)
        If the diskette is an 8 inch diskette, type "8"; if a 5 1/4 inch
        diskette, type "5".

                                  -40-



                                                   6809 FLEX DIAGNOSTICS

   35 TRACKS OR 40 TRACKS (3/4)
        If  the  diskette  is a 5 1/4 inch diskette and it was formatted
        for 35 tracks, type "3".  If it was  formatted  for  40  tracks,
        type "4".

   SINGLE OR DOUBLE SIDED (S/D)
        If the diskette is a single-sided diskette, type "S"; if it is a
        double-sided diskette, type "D".

   SINGLE OR DOUBLE DENSITY (S/D).
        If the diskette is a single-density diskette, type "S"; if it is
        a  double-density  diskette, type "D".  This prompt appears only
        if the diskette is an 8 inch diskette.

If  the  system  information  sector could not be read because of a disk
error, prompting beings with the HARD DISK OR FLOPPY DISK message.

                                  -41-



6809 FLEX DIAGNOSTICS

                       DISK TROUBLESHOOTING GUIDE

                              Introduction

     This portion of the manual gives hints on using the disk diagnostic
and repair programs in this package.  With experience, you  will  become
familiar with the capabilities and limitations of each program, and will
be better able to judge which program will work best  for  a  particular
problem.

                         Symptoms of a Problem

     Most  of the time, you will know that there is a problem because of
an error message issued by FLEX.  The messages that are sure  indicators
of a problem are:

               DISK FILE READ ERROR
               DISK FILE WRITE ERROR
               RECORD NUMBER MATCH ERROR - FILE DAMAGED

     In  some  cases,  an  unexpected  error message may be a clue.  For
example, a DRIVES NOT READY message when, indeed, they are ready, may be
an  indication  that  the  disk  controller could not find a sector.  On
5 1/4 inch disk drives, some controllers cannot detect a  NOT  READY  or
SECTOR  NOT  FOUND condition, so if the drive apparently "hangs up" with
the head loaded, it may also be an indication that the controller cannot
find a sector.

     A clue that there may be a structural problem with  a  disk  is  an
unexpected ALL AVAILABLE DISK SPACE HAS BEEN USED message.  If there was
a lot of space on the disk, and suddenly it all vanishes, then the  free
chain  has  been  destroyed.   This  is  a  warning  that the structural
integrity of the disk should be checked.

     Here  is  a partial list of some other events which should be taken
as warnings that a disk may be damaged.

  1) Data changing in a file.
     If a file that has not been re-written suddenly has different  data
     in  it,  it might indicate that another file is linked to it.  This
     is a severe structural problem that could result in a loss  of  all
     of the data on the disk.

  2) A file disagrees with its directory entry.
     If  a  file  is obviously much larger or much smaller than the size
     that is in the directory, then something is  wrong.   It  might  be
     that the file was truncated, or linked into the free chain.

  3) Duplicated or missing names in the directory.
     It  is  not  possible  to  create  a  file with the same name as an
     existing file.  If there are two files with the same name, then the
     directory has been damaged.

                                  -42-



                                                   6809 FLEX DIAGNOSTICS

  4) Memory problems in the machine.
     If  a  machine  has  recently  had a memory problem, then all disks
     should be checked once the  memory  problem  is  fixed.   A  memory
     problem  can  cause programs, including FLEX, to run wild.  Runaway
     programs can cause structural damage to the data on a  disk.   Such
     damage may not be immediately apparent.

     Most of the diagnostics do not take a long time to run.  So, a good
general  rule  is  to  run  diagnostics  if there is any doubt about the
physical or structural integrity of a disk.

                             General Hints

     As mentioned before, experience is the best  teacher  as  to  which
diagnostics are most suitable for any given problem.  However, there are
some general guidelines.

  1) If you get a disk error while reading a file, use FILETEST with the
     "A" option to determine which file contains the  error.   The  next
     step  is  to  try  reading  the disk on another disk drive.  If the
     error is "soft", the other drive might be able to  read  the  file.
     If so, copy the file immediately.

  2) If you get an error on a disk, you should first  decide  if  it  is
     worth  the  effort  to try to salvage what is left of the file.  If
     the data  can  be  regenerated  easily  from  backups  or  previous
     versions,  it might be faster to do that than to try to recover the
     damaged data.

  3) VALIDATE is the preferred test for detecting structural damage.

  4) Severe structural damage, such as files being linked  together,  is
     very  difficult  to  repair.  To do so requires a good knowledge of
     how files are contructed on a FLEX disk.  In many cases,  the  best
     course  is  to  copy  as  much  as  possible  to  another  disk and
     re-initialize the crashed disk.  An editor  can  then  be  used  to
     salvage as much as possible on the good disk.

  5) If the directory is damaged and cannot be read, the only hope is to
     use  REBUILD.   RECOVER  can  be  used  for individual files if the
     starting track and sector of each file is known.

                                  -43-



6809 FLEX DIAGNOSTICS

                                  -44-



              DISK DIAGNOSTICS AND UTILITIES DESCRIPTIONS

                                  -45-



6809 FLEX DIAGNOSTICS

                                  -46-



                                                   6809 FLEX DIAGNOSTICS

Program Name: COPYR
Program Type: DISKETTE UTILITY

PURPOSE:

COPYR  copies  a  file, forcing the new copy to be a random file.  It is
intended to be used after a file has been  recovered  with  the  REBUILD
utility, which cannot recover the file sector map.

Calling Sequence:

     COPYR old-file,new-file

     where:

        "old-file"  is  the file specification of the file that is to be
        copied.  The default extension is ".SCR".

        "new-file"  is  the  specification  of  the  file  that is to be
        written.  This file  will  be  the  random file.    The  default
        extension is ".SCR".

METHOD:

COPYR performs a simple file copy function, declaring the new file to be
a random file.  The  FLEX  operating  system  is  used  for  all  system
interfacing.  No special handling of errors is performed.  COPYR assumes
that the file is not damaged and that all sectors are readable.

MESSAGES:

COPY COMPLETED
     The copy operation has terminated normally.

All other messages are produced by the FLEX operating system.

REMARKS:

COPYR is used primarily to restore the file sector map portion of random
files which have been recovered by the REBUILD utility.  Any file may be
copied with COPYR, and the resulting copy will be a random file.   Note,
however,  that  some  programs  that  use  random  files, such as BASIC,
require that the data be organized in a special way in each sector.   If
COPYR  is  used  to make an arbitrary sequential file a random file, the
random file may not conform to the requirements of the program that uses
it.   Only those files that were originally random files, and which have
lost their file sector map, should be made random with COPYR.

                                  -47-



6809 FLEX DIAGNOSTICS

                                  -48-



                                                   6809 FLEX DIAGNOSTICS

Program Name: EXAMINE
Program Type: REPAIR UTILITY

PURPOSE:

EXAMINE is a repair utility which allows the user to  read,  modify,  or
write any sector on a FLEX diskette.

Calling Sequence:

     EXAMINE drive-number

     where:

        "drive  number"  is  the  drive  containing  the  diskette to be
        examined.  The diskette must already be mounted.   If  no  drive
        number  is  specified, the work drive is used if it has not been
        set to "all".  If the work drive  is  "all",  a  drive  must  be
        specified.

METHOD:

EXAMINE  starts by trying to read the System Information Sector from the
specified  drive.   If  successful,  it  determines  the   configuration
(diskette size, number of sides, and density) from that information.  If
the System Information Sector cannot be read, EXAMINE  will  prompt  for
the  information  necessary  to  determine  the configuration.  Once the
configuration is known, EXAMINE is ready to accept commands.

Commands:

EXAMINE indicates that it is ready for a command by issuing the prompt:

                                COMMAND:

There are nine valid  commands.   Each  command  consists  of  a  single
letter, optionally followed by a parameter.  The valid commands are:

         R,<sector address>   Read a sector
         W,<sector address>   Write a sector
         D,<sector address>   Read and display a sector
         C,<sector address>   Read and display until end of file
         M,<byte number>      Modify sector buffer
         F,<file spec>        Read first sector of a file
         B,<flle spec>        Build link table for a file
         T,<addr>,<addr>,<count> Move data in memory
         S                    Stop, return to FLEX

The parameter <sector address> will be described later on.

                                  -49-



6809 FLEX DIAGNOSTICS

R - Read a Sector into the Internal Sector Buffer
     The  sector specified as the parameter is read into a sector buffer
     internal to EXAMINE.  If an error was detected during  the  reading
     of  the  sector,  the appropriate error message is printed.  If the
     error was SECTOR NOT FOUND or DRIVE NOT READY,  then  no  data  was
     transferred to the internal sector buffer.

D - Read and Print (Dump) a Sector.
     This  command  reads  the specified sector into the internal sector
     buffer, then prints its content at the terminal.  If a  SECTOR  NOT
     FOUND  or DRIVE NOT READY error is detected, no information is read
     or printed.

W - Write the Internal Sector Buffer to a Sector
     The content of internal sector buffer  is  written  to  the  sector
     specified  by  the  argument  to the command.  If "verify" is "on",
     then the sector will be read after having been written.  Any  error
     detected  during  the  write or during a subsequent verification is
     reported.  If the error is SECTOR NOT FOUND  or  DRIVE  NOT  READY,
     then no data was written to the diskette.

C - Print a Chain of Sectors.
     This  command reads and prints the content of a chain of sectors as
     defined by the sector links.  The information  is  printed  in  the
     same  form as the "D" command.  The argument to this command is the
     address of the sector at which to start the dumping.   The  dumping
     stops  when  the end of the chain is reached, or a SECTOR NOT FOUND
     or DRIVE NOT READY error is encountered.  As with any  output  from
     FLEX,  the  printing may be stopped at any time by using the escape
     key.  Typing an escape followed by a carriage return will stop  the
     printing and a new command will be requested.

M - Modify Internal Sector Buffer Data
     This command allows the examination and changing of the data in the
     internal sector buffer.  The internal sector buffer must have  been
     previously  loaded  with  data  by  the  "R"  or  "D" command.  The
     argument to this command is the number of the byte, in hexadecimal,
     at  which  to  start the examination.  If no argument is specified,
     byte zero is assumed.   When  invoked,  the  byte  number  and  its
     current  content  are  displayed.   Typing  a two-digit hexadecimal
     number will cause the content to be changed to that number.  Typing
     an  up  arrow  (a  circumflex  on  some  keyboards)  will cause the
     previous byte to be displayed.    Typing  a  carriage  return  will
     return to command mode.  Typing any other separator character, such
     as a period, will cause the next byte to be displayed.  The display
     is circular; byte 00 is considered to follow byte FF.  This command
     does not update the sector on the diskette;  it  only  changes  the
     data  in  the  buffer.  To update the data on the diskette, the "W"
     command must be used, after modification of the  buffer,  to  write
     the updated internal sector buffer to the desired sector.

                                  -50-



                                                   6809 FLEX DIAGNOSTICS

F - Read First Sector of File
     The  argument  to  this  command is a FLEX file specification.  The
     default extension is ".TXT".  The diskette  directory  is  searched
     for  the  file  and, if found, the first sector of the file is read
     into the internal sector buffer.

     There are four names which may be specified instead of a legitimate
     file specification to cause the first sector of special areas of a
     FLEX  diskette  to  be  read.   This  is  a convenience so that the
     specific sector addresses do not have to be memorized or determined
     from  other  data.   These  names and the areas to which they refer
     are:

          $B  --  The boot sector
          $S  --  The system information sector
          $D  --  The directory chain
          $F  --  The free chain

     For  example, the command "F,$D" will cause the first sector of the
     directory to be read into the internal sector buffer.  If  desired,
     the entire directory may then be dumped by typing "C".

B - Build Link Table for File.
     The argument to this command is a FLEX file specification or one of
     the special names described under the "F" command.  If no  argument
     is specified, the current sector address is assumed to be the start
     of the chain.  When invoked, this command reads the chain,  storing
     the link from each sector in a table in memory.  After the table is
     built, the first sector is re-read and becomes the current  sector.
     This  table  is used whenever a "P" is specified as a disk address.
     Thus, once the table is built, one  may  move  both  forwards   and
     backwards  along that chain by specifying disk addresses of "N" and
     "P".  Each invocation  of  the  "B"  command  erases  the  previous
     content of the link  table in memory.  Thus, only one file chain at
     a time can occupy the link table.

T - Transfer (Move) Data in Memory.
     This command allows the moving of data in  memory.   It  has  three
     arguments,  an  address  indicating  where  the  data  is currently
     located, an address indicating where the data is to be moved, and a
     count  of  the  number  of bytes to move.  The two addresses are in
     hexadecimal, and the count is in decimal.  There  are  two  special
     forms  of  address  which  refer to the information in the internal
     data buffer.  These are *B and *D.  *B represents  the  address  of
     the  internal  data  buffer.  *D represents the address of the data
     portion of the internal sector buffer  (4  bytes  beyond  *B).   If
     either  *B or *D is used as an address, then the count parameter is
     optional.  If *B is specified add no count is specified, 256  bytes
     will be copied.  If *D is specified without a count, 252 bytes will
     be copied.  A count field may be used to move fewer bytes.   Moving
     more  that  256  bytes  into  the internal b@ffer area will produce
     unpredictable results.  Care must also be taken so that data is not
     moved  on top of EXAMINE.  EXAMINE and its buffers start at loction
     0000 and use up about 4K bytes; so data should not be moved  to  an

                                  -51-



6809 FLEX DIAGNOSTICS

     area  below  $1000.   Following  are  examples  of  the use of this
     command.

        T,3000,4000,100
             Move 100 bytes from $3000 to $4000.

        T,*B,5000
             Copy the content of the internal sector buffer  to  address
             $5000.  All 256 bytes will be copied.

        T,4020,*D,20
             Copy  twenty bytes of information from address $4020 to the
             data area of the internal sector buffer.   The  link  field
             and  record  number  field  of  the  sector  buffer are not
             changed.

S - Return to FLEX

Specifying Sector Addresses

EXAMINE  always  has  a  "current sector address", specified as a single
hexadecimal number.  This is the address  of  that  sector  (called  the
"current  sector"), which is to be read or written.  A sector address is
of the form "ttss", where "tt" is the track  number,  and   "ss"  is the
sector  number  within the track.  The current sector address starts out
at 0003 (track 00, sector 03),  which  is  the  address  of  the  System
Information  Sector.   When  a  command which has a sector address as an
argument is typed, the argument becomes the current sector address.   If
an illegal address is entered, an error message is given and the current
sector address does not change.  If no sector address is specified to  a
command that accepts one, then the action is performed on the current
sector.

A  sector  address in a command may be specified in one of several ways.
The simplest, and most useful, forms are:

   ttss Specify Track and Sector Explicitly.
        In this form, "tt" is the track number in hexadecimal, and  "ss"
        is  the sector number in hexadecimal.  The operation appropriate
        to the command is performed on the  explicitly  specified  track
        and sector.  For example, 010D is track 01, sector 0D.

   +  Next Physical Sector.
        Specifying  a plus sign as the sector address causes the current
        sector address to be incremented  by  1.   The  resulting  value
        becomes  the  new  current  sector address, and the command acts
        upon that address.  If the current sector address  is  the  last
        physical  sector  on a track, the the new current sector address
        is the first sector of the next track.  If  the  current  sector
        address  is  the  last  physical sector on the diskette, the new
        current sector address is the first sector of the first track on
        the  diskette.   For  example,  if the current sector address is
        0104, then specifying a plus  sign as the argument to a  command

                                  -52-



                                                   6809 FLEX DIAGNOSTICS

        will  cause  the  command  to act on the sector  with the sector
        address 0105.

   -  Previous Physical Sector.
        Specifying a minus sign as the sector address causes the current
        sector  address  to  be  decremented  by  1. The resulting value
        becomes the new current sector address,  and  the  command  acts
        upon  that  address.  If the current sector address is the first
        physical sector on a track, the new current  sector  address  is
        the  last  sector  of the previous track.  If the current sector
        address is the first physical sector on the  diskette,  the  new
        current  sector  address is the last sector of the last track on
        the diskette.  For example, if the  current  sector  address  is
        0105,  then specifying a minus sign as the,argument to a command
        will cause the command to act on  the  sector  with  the  sector
        address 0104.

   N  Next Logical Sector
        If  an "N" is specified as the sector address, the sector at the
        current sector address is read, and its  link  becomes  the  new
        current  sector  address.   The  command  then  acts on this new
        sector address.  The "W" command does not accept  this  form  of
        sector  address.  This form of sector address allows one to step
        through a file on a diskette.  If the link in the current sector
        is  zero  (an  end  of  file),  then the message END OF CHAIN is
        issued and the  command  does  nothing.   For  example,  if  the
        current  sector is 0104 and its link points to sector 0301, then
        0301 becomes the current sector address, and the command acts on
        that sector.

   P  Previous Logical Sector
        This  form  of  sector  address requires the "B" command to have
        been typed at some time.  If a "P" is specified as the  argument
        to  a  command, the sector link table, built by the "B" command,
        is searched for the current sector address.   If  it  is  found,
        then  the  sector which points to the current sector becomes the
        new current sector, and the command acts on it.  If the  current
        sector  is  not in the link table, or is the first sector in the
        link table, then a  message  is  issued  and  the  command  does
        nothing.   The  "W"  command does not accept this form of sector
        address.

   =  Use Current Sector
        If an equal sign is specified as the argument to a command, then
        the  current sector address does not change.  This is equivalent
        to not specifying any parameter to the command.

The  above  forms  of  sector address are the simplest forms.  There are
more complex forms which result in  greater  flexibility  in  specifying
sector  addresses  as parameters to commands.  The symbols "+", "-", and
"=" may be combined with each other and with track or sector numbers  to
form  a sector address.  For example, 3=, +4 and =+ are all legal forms.
In these forms, the item to the left refers to the track, and  the  item

                                  -53-



6809 FLEX DIAGNOSTICS

to the right refers to the sector.  Thus, 3= means "set the track  to  3
and  do not change the sector"; +4 means "increment the track number and
set the sector number to 4"; and =+ means "do not change the  track  and
increment the sector".  A table at the end of the documentation for this
program lists all of the legal forms and their effects  on  the  current
sector address.

MESSAGES:

ADDRESS: ttss, CRC ERROR
     A CRC error (Checksum Error) was detected by  the disk  controller
     when reading the sector at sector address "ttss".

ADDRESS: ttss, DRIVE NOT READY
     An  attempt  was made to read or write the sector at sector address
      "ttss", but the controller indicated that the drive was not ready.

ADDRESS: ttss, SECTOR NOT FOUND
     An attempt was made to read or write the sector at  sector  address
     "ttss",  but  the  controller  could  not  locate the sector on the
     diskette.  This usually indicates that the sector address field  on
     the diskette has been destroyed.

BAD LINK TO NEXT SECTOR
     A  command  which  follows links in a file chain encountered a link
     which specified a track not on the diskette,  a  sector  number  of
     zero, or a sector number larger than the maximum on the track.

COMMAND:
     The prompt for the next command.

DRIVE MUST BE SPECIFIED
     No parameter was specified when EXAMINE was called, and the working
     drive was set to "ALL".  If the working drive  is  "ALL",  a  drive
     number must be specified as a parameter when calling EXAMINE.

END OF CHAIN
     A  command  that normally follows the links in a file chain reached
     the end of the chain.  These commands include "B" and "C".    Also,
     any  command  invoked  with  the  logical  sector address "N" (Next
     Logical Sector), may give this message if the current sector is  an
     end of file.

ILLEGAL ADDRESS SPECIFIED
     A  memory  address  to  the "T" command was not a valid-hexadecimal
     number or *B or *D, or the sector address specified as the argument
     to  a command was not one of the legal forms.  See the table at the
     end of the documentation for this program  for  a  summary  of  the
     legal forms.

                                  -54-



                                                   6809 FLEX DIAGNOSTICS

ILLEGAL COUNT SPECIFIED
     An illegal decimal number was specified as the count  parameter  to
     the "T" command.

ILLEGAL DRIVE NUMBER
     An  invalid drive number was specified as the parameter to EXAMINE.

INVALID BYTE NUMBER
     An  illegal  hexadecimal  number was entered as the argument to the
     "M" command, or the number entered was greater than $FF.  Note that
     because  FLEX  is  used  to  assemble  the  byte number, lower case
     hexadecimal digits are not allowed.

NO PREDECESSOR FOUND
     A command was invoked with an argument  of  "P"  (Previous  Logical
     Sector),  but  the  current sector was the first sector in the link
     table.  Thus, the current sector is the first sector in  the  chain
     that was scanned when the table was built.

SECTOR NOT IN LINK TABLE
     A  command  was  invoked  with an argument of "P" (Previous Logical
     Sector), but the current sector was not in the sector  link  table.
     Either the "B" command was not previously invoked to build the link
     table, or the current sector is not a part of the file chain  which
     was scanned when building the table.

SYSTEM INFO SECTOR INVALID
     The  diagnostic could not read the system information sector on the
     diskette, or the information  read  concerning  maximum  track  and
     sector  did  not  appear correct.  This message will be followed by
     prompts  for  disk  configuration  information.   See   "The   Disk
     Utilities in This Package: System Dependencies" for details.

UNKNOWN COMMAND
     The command entered could not be recognized.

WRITE ON LOGICAL SECTOR NOT ALLOWED
     The  "W"  command  (Write  Sector)  may  not  have "P" or "N" as an
     argument.

                                  -55-



6809 FLEX DIAGNOSTICS

                        Legal Forms of Sector Address

                     SECTOR       EFFECT ON        EFFECT ON
                     ADDRESS       TRACK            SECTOR
                     FORM          NUMBER           NUMBER
                                 (See Note 1)     (See Note 2)

                      ttss       Set to "tt"      Set to "ss"
                      tt=        Set to "tt"       Unchanged
                      tt+        Set to "tt"      Incremented
                      tt-        Set to "tt"      Decremented
                      =ss         Unchanged       Set to "ss"
                      ==          Unchanged        Unchanged
                      =+          Unchanged       Incremented
                      =-          Unchanged       Decremented
                      +ss        Incremented      Set to "ss"
                      +=         Incremented       Unchanged
                      ++         Incremented      Incremented
                      +-         Incremented      Decremented
                      -ss        Decremented      Set to "ss"
                      -=         Decremented       Unchanged
                      -+         Decremented      Incremented
                      --         Decremented      Decremented
                      +          (See Note 3)     Incremented
                      -          (See Note 4)     Decremented
                      =           Unchanged        Unchanged
                     (Return)     Unchanged        Unchanged

1) If  the  effect  is  to  increment  the track number, and the current
   sector is on the last track of the diskette, then the track number is
   set to zero.  If the effect is to decrement the track number, and the
   current sector is in track zero, then the track number is set to  the
   last track on the diskette.

2) If the effect is to increment the  sector  number,  and  the  current
   sector is the last sector in the track, then the sector number is set
   to one.  If the effect is to decrement the  sector  number,  and  the
   current  sector  is  the  first sector on the track, then the sector
   number is set to the last sector of the track.

3) The  track  number  will  be incremented if the current sector is the
   last sector in the track.

4) The  track  number  will  be decremented if the current sector is the
   first sector in the track.

                                  -56-



                                                   6809 FLEX DIAGNOSTICS

                                   EXAMPLE

As  an  example  of  the  use of some of the features of EXAMINE, let us
assume that we have a diskette in which  a file  name  in  the  diskette
directory has been damaged.  Let us further assume that the file name is
supposed to be NEWDISK.CMD, but that one of the letters has been somehow
changed  to  a  control  character.   We  would  like  to change the bad
character to that which it should be.

The first step is to put the damaged diskette in the work drive and type
EXAMINE.  The following is an annotated example of how the session might
go.

COMMAND: F,$D                           <Read first sector of directory>
COMMAND: D                              <Dump the first sector>

DISK ADDRESS: 0005
   -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0- 00 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00                  
1- 45 52 52 4F 52 53 00 00 53 59 53 00 00 01 01 01 ERRORS  SYS      
2- 09 00 09 02 00 01 04 50 46 4C 45 58 00 00 00 00        PFLEX     
3- 53 59 53 00 00 01 0A 03 04 00 19 00 00 01 04 50 SYS             P
4- 50 52 49 4E 54 00 00 00 53 59 53 00 00 03 05 03 PRINT   SYS      
5- 05 00 01 00 00 01 04 50 43 41 54 00 00 00 00 00        PCAT      
6- 43 4D 44 00 00 03 06 03 08 00 03 00 00 01 04 50 CMD             P
7- 43 4F 50 59 00 00 00 00 43 4D 44 00 00 19 0F 1D COPY    CMD      
8- 04 00 05 00 00 01 0A 50 44 45 4C 45 54 45 00 00        PDELETE   
9- 43 4D 44 00 00 03 0E 03 0F 00 02 00 00 01 04 50 CMD             P
A- 4C 49 53 54 00 00 00 00 43 4D 44 00 00 04 01 04 LIST    CMD      
B- 03 00 03 00 00 01 04 50 50 00 00 00 00 00 00 00        PP        
C- 43 4D 44 00 00 04 04 04 04 00 01 00 00 01 04 50 CMD             P
D- 41 53 4E 00 00 00 00 00 43 4D 44 00 00 04 05 04 ASN     CMD      
E- 05 00 01 00 00 01 04 50 52 45 4E 41 4D 45 00 00        PRENAME   
F- 43 4D 44 00 00 04 06 04 06 00 01 00 00 01 04 50 CMD             P

                                        <Not in this sector>

                               (continued)

                                  -57-



6809 FLEX DIAGNOSTICS

COMMAND: D,N                            <Dump the next sector>

DISK ADDRESS: 0006
   -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0- 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00                  
1- 41 50 50 45 4E 44 00 00 43 4D 44 00 00 04 07 04 APPEND  CMD      
2- 09 00 03 00 00 01 04 50 42 55 49 4C 44 00 00 00        PBUILD    
3- 43 4D 44 00 00 04 0A 04 0A 00 01 00 00 01 04 50 CMD             P
4- 45 58 45 43 00 00 00 00 43 4D 44 00 00 04 0B 04 EXEC    CMD      
5- 0B 00 01 00 00 01 04 50 4E 05 57 44 49 53 4B 00        PN_WDISK  
6- 43 4D 44 00 00 04 0C 05 03 00 07 00 00 01 04 50 CMD             P
7- 53 41 56 45 00 00 00 00 43 4D 44 00 00 05 04 05 SAV     CMD      
8- 05 00 02 00 00 01 04 50 54 54 59 53 45 54 00 00        PTTYSET   
9- 43 4D 44 00 00 05 06 05 07 00 02 00 00 01 04 50 CMD             P
A- 4F 00 00 00 00 00 00 00 43 4D 44 00 00 05 08 05 0       CMD      
B- 09 00 02 00 00 01 04 50 50 55 43 43 4C 49 4E 4B        PPUCCLINK 
C- 43 4D 44 00 00 05 0A 06 08 00 0E 00 00 01 04 50 CMD             P
D- 4A 55 4D 50 00 00 00 00 43 4D 44 00 00 06 09 06 JUMP    CMD      
E- 09 00 01 00 00 01 04 50 44 41 54 45 00 00 00 00        PDATE     
F- 43 4D 44 00 00 06 0A 06 0B 00 02 00 00 01 04 50 CMD             P

                                        <It's in this sector.
                                         NEWDISK has the "E" damaged.
                                         Byte 59 should be $45, not $05.>

COMMAND: M,59                           <Modify starting at byte 59.>
59 05 45                                <Enter the correct value.>
5A 57                                   <Carriage return typed to exit.>
COMMAND: W                              <Re-write the directory sector.>
COMMAND: D                              <Read and dump it to make sure
                                         it's correct.>

DISK ADDRESS: 0006
   -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0- 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00                  
1- 41 50 50 45 4E 44 00 00 43 4D 44 00 00 04 07 04 APPEND  CMD      
2- 09 00 03 00 00 01 04 50 42 55 49 4C 44 00 00 00        PBUILD    
3- 43 4D 44 00 00 04 0A 04 0A 00 01 00 00 01 04 50 CMD             P
4- 45 58 45 43 00 00 00 00 43 4D 44 00 00 04 0B 04 EXEC    CMD      
5- 0B 00 01 00 00 01 04 50 4E 45 57 44 49 53 4B 00        PNEWDISK  
6- 43 4D 44 00 00 04 0C 05 03 00 07 00 00 01 04 50 CMD             P
7- 53 41 56 45 00 00 00 00 43 4D 44 00 00 05 04 05 SAV     CMD      
8- 05 00 02 00 00 01 04 50 54 54 59 53 45 54 00 00        PTTYSET   
9- 43 4D 44 00 00 05 06 05 07 00 02 00 00 01 04 50 CMD             P
A- 4F 00 00 00 00 00 00 00 43 4D 44 00 00 05 08 05 0       CMD      
B- 09 00 02 00 00 01 04 50 50 55 43 43 4C 49 4E 4B         PPUCCLINK 
C- 43 4D 44 00 00 05 0A 06 08 00 0E 00 00 01 04 50 CMD             P
D- 4A 55 4D 50 00 00 00 00 43 4D 44 00 00 06 09 06 JUMP    CMD      
E- 09 00 01 00 00 01 04 50 44 41 54 45 00 00 00 00        PDATE     
F- 43 4D 44 00 00 06 0A 06 0B 00 02 00 00 01 04 50 CMD             P

                                        <Data is correct.>
COMMAND:  S                             <Return to FLEX>

                                  -58-



                                                   6809 FLEX DIAGNOSTICS

As  an  example  of the use of the "T" command, let us assume that it is
desired to copy the data from sector 0104  into  sector  050F.   Let  us
further assume that only the data must be copied, not the link or record
number.  Here is how the session might go.

COMMAND: R,104                          <Read in sector 0104>
COMMAND: T,*D,4000                      <Move the data to a safe area>
COMMAND: R,50F                          <Read in the sector to be written>
COMMAND: T,4000,*D                      <Move the data into the buffer>
COMMAND: W                              <Update the sector on the disk>
COMMAND: S                              <Return to FLEX>

                                  -59-



6809 FLEX DIAGNOSTICS

                                  -60-



                                                   6809 FLEX DIAGNOSTICS

Program Name: FILETEST
Program Type: DISKETTE DIAGNOSTIC

PURPOSE:

FILETEST tests all or part of a diskette for errors by reading the  data
files  on the diskette.  All files, or a specified list of files, may be
tested.  Optionally, the boot sector and system sectors,  the  directory
chain,  and  the  free  chain  may be tested.  If desired, a list of the
sector addresses of those sectors in a file may  be  displayed.   If  an
error  is detected, the name of the file and the nature of the error are
displayed.

Calling Sequence:

     FILETEST,drive-and-options, file-list

     where:

        "drive and options" are the number of the drive to be tested and
        the  test options.  Either may be specified first, and either or
        both may be omitted.  If no drive is specified, the  work  drive
        is used if it is not "all".  If the work drive is "all", a drive
        number must be specified.  The options are  a  string,  starting
        with a "+", composed of one or more of the following letters:

             A - Test all files on diskette
             D - Test directory chain
             F - Test free chain
             M - Print map (sector list) for each selected file
             S - Test Boot and System sectors

        "file  list" is a list of FLEX files to be tested.  Each file in
        the list will be tested.  If no file  list  is  specified,  only
        those portions of the diskette specified through options will be
        tested.

METHOD:

When called, FILETEST first  checks  to  see  if  the  boot  and  system
sectors,  the directory, or the free chain is to be tested.  If so, they
are checked before any files are tested.  If an error is  detected  when
testing these special areas, the following pseudo-file names are used in
the error message:

          $BOOT.SYS    - Boot Sector
          $SYSINFO.SYS - System Information Sector
          $DIRECTY.SYS - Directory
          $FREECHN.SYS - Free Chain

Each  file  chain is tested by following the sector links in that chain.

                                  -61-



6809 FLEX DIAGNOSTICS

Once an error is found in a file, the testing of that  file  stops,  and
testing  of the next file begins.  It is assumed that the file chains on
the diskette are structurally intact; that is, none of the sectors  have
bad links.

If a file chain can be read without error, the file size and last sector
number  are compared to that which is stored in the directory.  An error
message is issued if there is a discrepancy.

MESSAGES:

TESTING COMPLETED
     Testing of the requested files is finished.

LAST SECTOR ERROR, EXPECTED tt/ss, ACTUAL tt/ss
     The  number  of  the  last  sector  of the file, as recorded in the
     directory, does not correspond to the number  of  the  last  sector
     read  by  FILETEST.  The value after EXPECTED is the value from the
     directory; that after ACTUAL, the value from the file itself.

SECTOR COUNT ERROR, EXPECTED nnnn, ACTUAL nnnn
     The number of sectors in the file, as recorded  in  the  directory,
     does  not  correspond  to  the  count accumulated while reading the
     file.  The value after EXPECTED is the value  from  the  directory;
     that after ACTUAL, the count accumulated while reading the file.

ERROR READING DIRECTORY
     A  disk  error  was  encountered  while  trying  to open a file for
     testing.

File name NOT FOUND
     The indicated file, which was specified in the file list, could not
     be found in the diskette directory.

File name CANNOT LOCATE TRACK/SECTOR tt/ss
     When  reading  the  indicated  file,  the disk controller could not
     locate a sector.  This is usually an indication  that  the  address
     field  of  the  sector is damaged.  Normally, there is nothing that
     can be done to recover the data from a sector that has this error.

File name READ ERROR TRACK/SECTOR tt/ss
     A CRC error (checksum error) 'was detected by the  disk  controller
     when reading the indicated file.  With this kind of error, the data
     might be recoverable.

UNKNOWN OPTION IGNORED - x
     The option "x" is not a valid option.  The valid options are: A, D,
     F, M, and S.

ERROR IN DRIVE NUMBER
     An  illegal  drive  number  was  specified  to  the diagnostic as a
     parameter.

                                  -62-



                                                   6809 FLEX DIAGNOSTICS

DRIVE MUST BE SPECIFIED
     The diagnostic was called without an argument and the default  work
     drive  was set to "all".  The diagnostic will check only one drive,
     so in this case, a drive must be specified.

DRIVE NOT READY
     The drive is not ready, the diagnostic is aborted.

File name NULL FILE
     The "M" option was selected (print list of sector numbers), but the
     file  size  was  zero.  Such a file may be created by resetting the
     machine with a file open for writing, then re-booting the system.

REMARKS:

FILETEST cannot detect the error in which a file loops back  on  itself.
If  FILETEST is reading such a file, it will loop forever.  VALIDATE may
be used to detect such files.

EXAMPLES

   1) Test the file DATA.TXT on the working drive.

                               FILETEST DATA.TXT

        Note that no drive number is necessary if the diskette is in the
        working drive (so long as the work drive is not set to "all").

   2) Test all of the files on the diskette in drive 0.

                  FILETEST +A 0   or
                  FILETEST 0 +A

        Note here that the options and drive number are interchangeable.

   3) Print out a list of the sectors comprising the free chain.

                                  FILETEST +MF

   4) Test the directory and the file DATA.DAT on the tiorking drive.

                              FILETEST +D DATA.DAT

                                  -63-



6809 FLEX DIAGNOSTICS

                                  -64-



                                                   6809 FLEX DIAGNOSTICS

Program Name: FLAW
Program Type: DISKETTE UTILITY

PURPOSE:

FLAW  removes  sectors  from  the  free  chain of a FLEX diskette either
because  they  contain  errors,  or  because  they  were  specified   as
parameters  to the program.  The removed sectors are no longer available
for use.  This utility is best  used  for  removing  sectors  that  have
suddenly  gone  bad,  or  for  removing sectors that are intermittent or
pattern sensitive.  These types of sectors normally may  be  initialized
without error, but give errors when they are used in a file.

Calling Sequence:

     FLAW,drive-number,sector-list

     where:

        "drive  number"  is  the  drive, containing  the  diskette to be
        processed.  The diskette must already be mounted.  If  no  drive
        number  is  specified, the work drive is used if it has not been
        set to "all".  If the work drive  is  "all",  a  drive  must  be
        specified.

        "sector list" is an optional list of sector addresses,  each  in
        the  form  "ttss"  ("tt" is the track number, "ss" is the sector
        within that track).  If the sector list is omitted,  only  those
        sectors  which  contain errors will be removed.  Any sector that
        has an error will be removed, even if it is not in the list.

METHOD:

FLAW starts reading the free chain on the  diskette.   If  a  sector  is
encountered  which  is  specified  in  the  list, it is removed from the
chain.  If a sector has an error, an informative message is issued,  and
FLAW attempts to remove it from the chain.  If the sector with the error
has a bad link, it cannot be removed, and FLAW terminates immediately.

MESSAGES:

ILLEGAL DRIVE NUMBER
     An  illegal  drive  number  was  specified  to  the diagnostic as a
     parameter.

DRIVE NUMBER MUST BE SPECIFIED
     The diagnostic was called without a drive number  and  the  default
     work  drive  was  set to "all".  The diagnostic will check only one
     drive, so in this case, a drive must be specified.

                                  -65-



6809 FLEX DIAGNOSTICS

"FLAW" FINISHED
     The removal of the specified sectors was successfully accomplished.

SYSTEM SECTOR NOT UPDATED
     FREE CHAIN DAMAGED
     A  disk  error  was  encountered  when  trying to update the system
     information record with the new configuration of  the  free  chain.
     The  data on the diskette should be copied to another diskette, and
     the old diskette initialized.

ERROR WHILE READING ttss
     An error was detected reading the sector at sector address  "ttss".
     FLAW will attempt to remove the sector from the free chain.

BAD LINK IN ttss - FATAL ERROR
     The sector at sector address "ttss" contains a bad link.  It is not
     possible to remove it from the free chain, nor is it  possible  for
     FLAW to continue.  FLAW terminates immediately.

FREE CHAIN ENDS PREMATURELY - FATAL ERROR
     The  end of the free chain was encountered unexpectedly.   The free
     chain is probably shorter than indicated in the system  information
     sector.   The  diskette  should be considered structurally damaged,
     and the data copied to a good diskette.

END OF FREE CHAIN NOT FOUND
     The free chain either  is  longer  than  indicated  in  the  system
     information  sector,  or loops back on itself.  The diskette should
     be considered structurally damaged, and the data copied to  a  good
     diskette.

SYSTEM SECTOR CANNOT BE READ
     A  disk  error  was  encountered  when  trying  to  read the system
     information sector.  FLAW terminates immediately.

ttss NOT FLAWED
     The sector indicated by "ttss", which was specified as a parameter,
     was not found in the free chain.

CANNOT UPDATE ttss - FATAL ERROR
     When  trying  to  remove  a  sector from the free chain, the sector
     pointing to the one being removed could not be read to be  updated.
     This  sector  had  been  read  previously  without  error.     FLAW
     terminates immediately.  FLAW may be re-run to remove this  sector.

ERROR DURING UPDATE OF ttss - FATAL ERROR
     When trying to remove a sector from  the  free  chain,  the  sector
     pointing to the one being removed yielded a write error when it was
     considered  structurally  damaged,  and  the  data copied to a good
     diskette.

                                  -66-



                                                   6809 FLEX DIAGNOSTICS

REMARKS:

FLAW assumes that the system information sector is intact.  It  is  from
this  sector  that  the  information  on  the  free  chain  and diskette
configuration is obtained.  If this sector cannot be read, FLAW issues a
message and terminates.

The free chain should not contain sectors which have a  damaged  address
field.   These  sectors  would result in a "sector not found" error from
the TEST or FILETEST diagnostic.  FLAW does not  distinguish  among  the
various types of errors and will try to remove a "not found" sector from
the free chain, resulting in structural damage to the free chain.

FLAW  updates  the  system  information  sector  each  time  a sector is
removed.  If FLAW should terminate before  processing  the  entire  free
chain,  the  free  chain  is  probably  intact.   However,  under  these
circumstances, it would be wise to check the diskette with VALIDATE.

After  FLAW  has  run,  it  is  good practice to run VALIDATE.  If a bad
sector has a damaged link field, but the link is still within the  range
of  legal  values, then FLAW may cause structural damage to the files or
free chain.

EXAMPLES

   1) Remove any sectors in the free chain of the diskette in  the  work
        drive that have errors.

                                      FLAW

   2) Remove  any  sectors  in the free chain of the diskette in drive 1
        that have errors.

                                     FLAW 1

   2) Remove any sectors in the free chain of the diskette in  the  work
        drive  that  have  errors.   Also remove sectors 0103, 050F, and
        1B05.

                              FLAW,,0103,050F,1B05

        Note that  two  commas  were  necessary  after  FLAW  because  a
        parameter must be reserved for the drive number.  Since no drive
        number was actually specified, the work drive is used.  (In this
        case, the work drive must not be set to "all").

                                  -67-



6809 FLEX DIAGNOSTICS

                                  -68-



                                                   6809 FLEX DIAGNOSTICS

Program Name: RAWCOPY
Program Type: DISKETTE UTILITY

PURPOSE:

RAWCOPY  copies  a  file, ignoring checksum errors (CRC errors) whenever
possible.  It is intended to be used in an attempt to retrieve  most  of
the data in a file that has a bad sector in it.  Because of the checksum
error, the data in that sector will be damaged; however, it  is  assumed
that once a readable copy is available, an editor or the EXAMINE utility
can be used to correct the damage.

Calling Sequence:

     RAWCOPY old-file,new-file

     where:

        "old-file" is the file specification of the file  that  contains
        the bad sector.  The default extension is TXT".

        "new-file" is the specification  of  the  file  that  is  to  be
        written. The default extension is that of the old file.

METHOD:

RAWCOPY  performs  a simple file copy function, ignoring checksum errors
in the file being copied, if possible.  The file is copied one sector at
a time.    The link in each sector is validated against the legal maxima
for track and sector.  These values are read from the system information
sector  of  the  diskette  containing  the  bad  file.   If  the  system
information sector cannot  be  read,  the  user  will  be  prompted  for
information  sufficient  to  determine the size and configuration of the
diskette.  If, while reading the file, a bad  link  is  detected,  or  a
"sector  not  found" or "drive not ready" error is detected, the copy is
aborted.

MESSAGES:

COPY COMPLETED
     The copy operation has terminated normally.

COPY ABORTED
     The copy operation could not be completed because either a bad link
     was detected in a sector or a "not found" or "not ready" error  was
     detected.

                                  -69-



6809 FLEX DIAGNOSTICS

SYSTEM INFO SECTOR INVALID
     The  diagnostic could not read the system information sector on the
     diskette, or the information  read  concerning  maximum  track  and
     sector  did  not  appear correct.  This message will be followed by
     prompts  for  disk  configuration information.    See   "The   Disk
     Utilities in This Package: System Dependencies" for details.

ADDRESS: ttss, DRIVE NOT READY
     A  "not  ready" response was received from the disk controller when
     the sector at disk address "ttss" was being read.

ADDRESS: ttss, SECTOR NOT FOUND
     The sector specified by disk address "ttss" could not be located by
     the disk controller.  This normally indicates damage to the address
     portion of the sector.

ADDRESS: ttss, CRC ERROR
     A checksum error was detected by the disk controller while  reading
     the sector at disk address "ttss".

BAD LINK ENCOUNTERED
     A  bad link to the next sector was detected while reading the file.
     The copy is aborted.

Any other messages are produced by the FLEX operating system.

                                  -70-



                                                   6809 FLEX DIAGNOSTICS

Program Name: REBUILD
Program Type: DISKETTE UTILITY

PURPOSE:

REBUILD attempts to find files on a crashed diskette whose directory has
been destroyed.  Those files that are  located  are  copied  to  another
drive.

Calling Sequence:

     REBUILD source-drive,destination-drive

     where:

        "source drive" is the number of the drive containing the crashed
        diskette.

        "destination  drive"  is  the  number  of the drive containing a
        diskette which will receive copies of those files  that  can  be
        located.

        REBUILD will pause before starting  the  recovery  so  that  the
        appropriate diskettes can be inserted in the drives.

METHOD:

REBUILD  starts  at  track  1,  sector 1 and searches the diskette for a
sector which has a record number of 0001.  When  one  is  found,  it  is
assumed  to be the start of a file.  The chain, starting at that sector,
is read to determine if it really is a file.  If the chain consists of a
series of sectors with record numbers that are in order, then a file has
been found.  If the record numbers are not correct, it is  assumed  that
this  file  had  been  deleted  and  is now in the free chain; it is not
recovered.  Once the file has been found, it  is  copied  to  the  other
diskette.   A  name  of  the  form FILEnnnn.SCR is assigned to the copy,
where "nnnn" is an increasing number.  The first file found is given the
name  FILE000l.SCR;  the  second, FILE0002.SCR, etc.  After the file has
been copied, or a chain was found not to be a legitimate file, then  the
scan continues from where it found the first sector of the chain.  After
the files have been recovered, it is up to the user to list or dump them
to determine what the files are, and to rename them appropriately.

MESSAGES:

RECOVERY COMPLETED
     REBUILD has found all of the files on the diskette.

                                  -71-



6809 FLEX DIAGNOSTICS

COPY ABORTED
     The current file being copied has a disk error in it.  The  copying
     of  the file is terminated and the search for another file resumes.

SYSTEM INFO SECTOR INVALID
     The  diagnostic could not read the system information sector on the
     diskette, or the information read  concerning  maximum  track   and
     sector  did  not  appear correct.  This message will be followed by
     prompts  for  disk  configuration  information.  See    "The   Disk
     Utilities in This Package: System Dependencies" for details.

DRIVE NUMBER ERROR
     An  illegal  drive  number  was  specified  to  the diagnostic as a
     parameter, or a drive number was missing.

DRIVES ARE THE SAME
     The "source drive" and "destination drive" may not be the same.

ADDRESS: ttss, DRIVE NOT READY
     A "not ready" response was received from the disk  controller  when
     the sector at disk address "ttss" was being read.

ADDRESS: ttss, SECTOR NOT FOUND
     The sector specified by disk address "ttss" could not be located by
     the disk controller.  This normally indicates damage to the address
     portion of the sector.

ADDRESS: ttss, CRC ERROR
     A  checksum error was detected by the disk controller while reading
     the sector at disk address "ttss".

FILEnnnn.SCR ttss  nn SECTOR(S)
     While the file is being copied, its name, FILEnnnn.SCR (where  nnnn
     is  a  number)  is displayed.  Also displayed is the starting track
     and sector ("ttss") of the file on the crashed diskette.  When  the
     copy is completed, the number of sectors copied is also displayed.

INSERT DISKS, HIT ANY KEY
     When  this  message  appears,  insert  the  appropriate diskettes in
     their drives and type any key.   The  recovery  process  will   then
     begin.

REMARKS:

If a file was a random file on the crashed diskette, the file sector map
will not be recovered by REBUILD.  After the file has  been  copied,  it
must  be recopied from the good diskette with the COPYR utility in order
to rebuild the file sector map.

The  file most recently deleted, if still intact in the free chain, will
also be recovered as a separate file.

                                  -72-



                                                   6809 FLEX DIAGNOSTICS

Program Name: RECOVER
Program Type: DISKETTE UTILITY

PURPOSE:

RECOVER copies files from a crashed diskette to another diskette.  Files
to be copied are specified by their starting track and sector.
                                    

Calling Sequence:

     RECOVER source-drive,destination-drive

     where:

        "source drive" is the number of the drive containing the crashed
        diskette.

        "destination  drive"  is  the  number  of the drive containing a
        diskette which will receive copies of the specified files.

        RECOVER  will  pause  before  starting  the recovery so that the
        appropriate diskettes can be inserted in the drives.

METHOD:

After the diskettes have been mounted,  RECOVER  prompts  for  the  disk
address of the file to be copied.  The disk address should be entered in
the form: ttss, where "tt" is the  the track number in hexadecimal,  and
"ss"  is  the sector number in  hexadecimal.  After the disk address has
been entered, RECOVER prompts for the name to be given to  the  copy  of
the  file.   The default extension is ".TXT".  Once this information has
been entered, the file is copied.  After the copy, a prompt for  another
disk  address  is issued.  To exit from RECOVER, enter a carriage return
in answer to the prompt for a disk address.

The  copy  is  performed  by  following the links in the file chain.  No
validation of sector links or record numbers is performed.

MESSAGES:

COPY ABORTED
     A  read  error was encountered while copying the file.  The copy of
     the file is abandoned.

DRIVE NUMBER ERROR
     An illegal drive number  was  specified  to  the  diagnostic  as  a
     parameter, or a drive number was missing.

                                  -73-



6809 FLEX DIAGNOSTICS

ADDRESS: ttss, DRIVE NOT READY
     A  "not  ready" response was received from the disk controller when
     the sector at disk address "ttss" was being read.

ADDRESS: ttss, SECTOR NOT FOUND
     The sector specified by disk address "ttss" could not be located by
     the disk controller.  This normally indicates damage to the address
     portion of the sector.

ADDRESS: ttss, CRC ERROR
     A checksum error was detected by the disk controller while  reading
     the sector at disk address "ttss".

INSERT DISKS, HIT ANY KEY
     When  this  message  appears, insert  the appropriate diskettes in
     their drives and type any key.  The  recovery  process  will  then
     begin.

DISK ADDRESS:
     This is the prompt for the disk address of the start of the file to
     be recovered.

FILE NAME:
     This is a prompt for the name to be assigned to the copy of the
     file.

ERROR IN ADDRESS
     The disk address typed was not a valid hexadecimal number.

FILE NAME ERROR
     The file name typed was not a valid FLEX file name.

REMARKS:

RECOVER  does not attempt to detect if the file being copied is a random
file.  If the file you are going to recover is a random file,  the  file
sector  map associated with the file will be copied along with the data,
but the sector map will no longer be correct.  To correct this, the  old
sector  map  has  to  be removed, and a new one constructed.  Since this
involves the use of more than one utility, it will be covered in one  of
the cases in the section "Case Studies".

EXAMPLE

Recover the files starting at addresses 0306 and 070A.  The crashed disk
is in drive 1, and the copies are to be put on the diskette in drive  0.
Give the first file the name DATA.DAT; the second, TRIAL.BAS.

+++RECOVER 1 0                          <Recover from 1 to 0>
INSERT DISKETTES, HIT ANY KEY
DISK ADDRESS: 0306                      <Enter address for first file>
FILE NAME: DATA.DAT                     <Enter name for first file.

                                  -74-



                                                   6809 FLEX DIAGNOSTICS

                                         The file is recovered.>
DISK ADDRESS: 070A                      <Address for second file>
FILE NAME: TRIAL.BAS                    <Enter name for second file.
                                         The file is recovered.>
DISK ADDRESS:                           <Carriage return typed>
RECOVERY COMPLETED

                                  -75-



6809 FLEX DIAGNOSTICS

                                  -76-



                                                   6809 FLEX DIAGNOSTICS

Program Name: TEST
Program Type: DISKETTE DIAGNOSTIC

PURPOSE:

TEST reads every sector on a diskette, reporting those that have errors.

Calling Sequence:

     TEST drive-number

     where:

        "drive  number"  is  the  drive  containing  the  diskette to be
        tested. The diskette must already  be  mounted.    If  no  drive
        number  is  specified, the work drive is used if it has not been
        set to "all".  If the work drive  is  "all",  a  drive  must  be
        specified.

METHOD:

TEST  first  reads  the  system  information  sector  on the diskette to
determine the number of tracks, number of sectors per track   number  of
sides,  and  density.   If the system information sector cannot be read,
the user is prompted for the information.  TEST then starts at the track
0, sector 1, and reads each sector on the diskette.  The address of each
sector that has an error is reported,  along  with  the  type  of  error
encountered.

MESSAGES:

SYSTEM INFO SECTOR INVALID
     The diagnostic could not read the system information sector on  the
     diskette,  or  the  information  read  concerning maximum track and
     sector did not appear correct.  This message will  be  followed  by
     prompts   for   disk  configuration  information.   See  "The  Disk
     Utilities in This Package: System Dependencies" for details.

ILLEGAL DRIVE NUMBER
     An illegal drive number  was  specified  to  the  diagnostic  as  a
     parameter.

DRIVE MUST BE SPECIFIED
     The  diagnostic was called without an argument and the default work
     drive was set to "all".  The diagnostic will check only one  drive,
     so in this case, a drive must be specified.

                                  -77-



6809 FLEX DIAGNOSTICS

ADDRESS: ttss, DRIVE NOT READY
     A  "not  ready" response was received from the disk controller when
     the sector at  disk  address  "ttss"  was  being  read.   The  test
     terminates immediately.

ADDRESS: ttss, SECTOR NOT FOUND
     The sector specified by disk address "ttss" could not be located by
     the disk controller.  This normally indicates damage to the address
     portion of the sector.

ADDRESS: ttss, CRC ERROR
     A  checksum error was detected by the disk controller while reading
     the sector at disk address "ttss".

REMARKS:

Some disk controllers used for  5"  diskette  drives  do  not  have  the
capability  of detecting that a drive is not ready.  If the drive is not
ready, the test will hang until the drive is made ready.

                                  -78-



                                                   6809 FLEX DIAGNOSTICS

Program Name: UNDELETE
Program Type: DISKETTE UTILITY

PURPOSE:

UNDELETE attempts to remove deleted files from the free chain, restoring
them in the directory with a user specified name.

Calling Sequence:

     UNDELETE drive-number

     where:

        "drive  number"  is the drive containing the diskette which must
        already be mounted.  If no drive number is specified,  the  work
        drive  is  used  if  it  has not been set to "all".  If the work
        drive is "all", a drive must be specified.

METHOD:

UNDELETE starts by searching the free chain, building  a  map  of  those
sector  chains  that  appear  to  constitute files.    After the scan is
finished, UNDELETE is ready to process the files that it has found.  The
files  that  it  has  found  in  the  free  chain are numbered, with the
"youngest" file (the most recently deleted) being number 1.    By  using
commands, the user may examine and optionally recover  any file from the
free chain.  The youngest file in the free chain is made  the  "current"
file,  and  information  about  that file is displayed   The information
displayed includes the size,of the file, the starting disk  address  and
whether  it  is a sequential file or a random file.  UNDELETE then waits
for a command.  The possible commands are:

     D - Dump the current file is hexadecimal and ASCII.
     N - Proceed to the next older file.
     P - Go back to the previous (next younger) file.
     R - Recover the current file.  A prompt  for  the  file  name  will
        follow.
     S - Return to FLEX.

In  addition  to  the above commands, the number of a file may be typed.
That file is then made the "current" file,  and  the  information  about
that file is displayed.

Commands:

UNDELETE indiactes that it is ready for a command by issuing the prompt:

                         ACTION (D/N/P/R/S/#)?

                                  -79-



6809 FLEX DIAGNOSTICS

The letters in parentheses are the legal commands, with "#" meaning that
a file number may be entered.

D - Dump the Current File
     The content of the current file is dumped in hexadecimal and ASCII.
     The escape key may be used to temporarily stop the dump.  Typing an
     escape followed by a return will cause  the  ACTION  prompt  to  be
     re-issued.

N - Proceed to the next Older File.
     The  next older file (closer to the beginning of the free chain) is
     made the current file and information about that file is displayed.

P - Go back to the Previous File.
     The next younger file (closer to the end of the free chain) is made
     the current file and information about that file is displayed.

R - Recover the Current File.
     The  current file is to be recovered.  The user is prompted for the
     name to be assigned to the recovered file.  At this point,  a  name
     must be typed since the file has already been removed from the free
     chain.  If an illegal name is given, the request for a name will be
     re-issued.

S - Return to FLEX

If  a carriage return is entered, the information about the current file
is re-displayed.

MESSAGES:

ACTION (D/N/P/R/S/#)?
     The prompt for the next command.

DRIVE MUST BE SPECIFIED
     No  parameter  was  specified  when  UNDELETE  was  called, and the
     working drive was set to "ALL".   If the working drive is "ALL",  a
     drive  number  must  be  specified  as  a  parameter  when  calling
     UNDELETE.

ILLEGAL DRIVE SPECIFIED
     An invalid drive number was specified as the parameter to  EXAMINE.

FILE ALREADY EXISTS
     The file name typed already exists in the  diskette  directory.   A
     file name is requested again.

nnnn FILES FOUND
     This  message  is  issued  after  the  scan  of  the  free chain is
     completed. It indicates the number of files found.

                                  -80-



                                                   6809 FLEX DIAGNOSTICS

FILE NUMBER OUT OF RANGE
     A file number was entered in response to the ACTION prompt that was
     larger  than the number of files found in the free chain.  Entering
     a file number of zero will also result in this message.

UNRECOGNIZED COMMAND
     The command that was typed could not be recognized.

FREE CHAIN IS EMPTY
     There are no files in the free chain.

FILE NAME?
     This is a request for the name to  be  assigned  to  the  recovered
     file.  The default extension in ".BIN".

REMARKS:

The  scanning  of  the  free  chain  for  files  may  take  a long time,
especially on double sided or double density diskettes.

Only  complete  files may be recovered.  If a part of a deleted file has
already been re-used by FLEX, that file can not be recovered.

EXAMPLE

Assume that we want to recover a file that has  been  deleted  recently.
We  know that it was about 20 sectors long, and that it was a sequential
file containing the source of a program called LOAD.   If  the  diskette
that has the file is in drive 1, then the recovery session night proceed
as follows:

+++UNDELETE 1                         <Call UNDELETE>
6 FILES FOUND
FILE 1 6 SECTOR(S), ADDRESS: 0206 TYPE: SEQUENTIAL
ACTION (D/N/P/R/S/#)? N               <Go to the next file>
FILE 2  19 SECTOR(S), ADDRESS: 0F04 TYPE: RANDOM
ACTION (D/N/P/R/S/#)? N                <Go to the next file, this one is
                                        about the right size, but it's
                                        a random file, not sequential>
FILE 3  1 SECTOR(S), ADDRESS 0102 TYPE: SEQUENTIAL
ACTION (D/N/P/R/S/#)? N                <Go to the next file>
FILE 4  22 SECTORS(S), ADDRESS 300F TYPE: SEQUENTIAL
ACTION (D/N/P/R/S/#)? D                <This might be it. Dump it.>

30 0F
30 10 00 01 20 4E 41 4D 20 4C 4F 41 44 20 2D 20 0   NAM LOAD -
4C 4F 41 44 20 22 53 31 22 20 46 49 4C 45 20 46 LOAD "S1" FILE F
52 4F 4D 20 43 41 53 53 45 54 54 45 2E 00 20 4F ROM CASSETTE._ O
50 54 20 50 41 47 0D 20 50 41 47 0D 2A 2A 2A 09 PT PAG_ PAG_***_
03 4C 4F 41 44 20 2D 20 4C 4F 41 44 20 22 53 31 _LOAD - LOAD "S1
22 20 46 49 4C 45 20 46 52 4F 4D 20 43 41 53 53 " FILE FROM CASS
45 54 54 45 2E 0D 20 53 50 43 20 34 0D 2A 2A 09 ETTE._ SPC 4_**_

                                  -81-



6809 FLEX DIAGNOSTICS

03 53 59 4D 42 4F 4C 20 44 45 46 49 4E 49 54 49 _SYMBOL DEFINITI
4F 4E 53 2E 0D 20 53 50 43 20 32 0D 47 45 54 43 ONS._ SPC 2_GETC
48 52 20 45 51 55 20 24 43 44 31 35 20 47 45 54 HR EQU $CD15 GET
20 43 48 41 52 41 43 54 45 52 0D 50 43 52 4C 46  CHARACTER_PCRLF
20 45 51 55 20 24 43 44 32 34 20 50 52 49 4E 54  EQU $CD24 PRINT
20 43 52 2F 4C 46 0D 50 53 54 52 4E 47 20 45 51  CR/LF_PSTRNG EQ
55 20 24 43 44 31 45 20 50 52 49 4E 54 20 53 54 U $CD1E PRINT ST
52 49 4E 47 0D 50 55 54 43 48 52 20 45 51 55 20 RING_PUTCHR EQU 
24 43 44 31 38 20 4F 55 54 50 55 54 20 43 48 41 $CD18 OUTPUT CHA

30 10
30 11 00 02 52 41 43 54 45 52 0D 57 41 52 4D 53 0___RACTER_WARMS
20 45 51 55 20 24 43 44 30 33 20 52 45 54 55 52  EQU $CD03 RETUR
4E 20 54 4F 20 53 59 53 54 45 4D 0D 20 53 50 43 N TO SYSTEM_ SPC

                                        <Printing stopped by typing
                                         "escape" followed by "return">
ACTION (D/N/P/R/S/#)? R                 <This is the file, recover it>
FILE NAME? LOAD.TXT                     <Name is LOAD.TXT>
ACTION (D/N/P/R/S/#)? S                 <Return to FLEX>

                                  -82-



                                                   6809 FLEX DIAGNOSTICS

Program Name: VALIDATE
Program Type: DISKETTE DIAGNOSTIC
           

PURPOSE:

VALIDATE checks a FLEX diskette for structural errors caused by hardware
or software malfunction.  The following items are checked:

     a) that  the  sector  links in each file are legal track and sector
        values,
     b) that the record numbers in the sectors of a file are correct,
     c) that the sectors in a random file correspond to those  specified
        in the file sector map,
     d) that the file size and ending disk  address  correspond  to  the
        values in the directory,
     e) that the free chain corresponds to its description in the system
        information record,
     f) that the directory does not end prematurely,
     g) that files do not intersect, and
     h) that there are no orphaned sectors (viz.  those that are not  in
        a file nor in the free chain or directory).

Calling Sequence:

     VALIDATE,drive-number

     where:

        "drive  number"  is  the  drive  containing  the  diskette to be
        validated.  The diskette must already be mounted.  If  no  drive
        number  is  specified, the work drive is used if it has not been
        set to "all".  If the work drive  is  "all",  a  drive  must  be
        specified.

METHOD:

VALIDATE reads every file chain on the diskette, including the directory
and the free chain.  A record of each sector in the chain is made  in  a
table  in  memory.   As  each  chain is scanned, the table is checked to
determine if the sector currently being read was part of another  chain.
If so, this is an error since the two chains intersect.  As each file is
being read, the links in each sector  are  checked  against  the  values
permitted  for  the size of diskette being tested.  Any track and sector
values which are out of range are reported as an  error.   In  addition,
the  record  number  in each sector is checked.  Record numbers that are
out of sequence are also reported as errors.  If the directory indicates
that  the  file  being  checked is a random file, the file sector map is
checked for valid structure.  Each sector in the file must  also  be  in
the sector map.  Any discrepancies are reported as errors.  After all of
the file chains have been examined, the table in memory is  examined  to
determine  if  any sectors have not been encountered.  If some have been

                                  -83-



6809 FLEX DIAGNOSTICS

missed, a count of them is printed.

MESSAGES:

FILE: file name, LAST SECTOR ERROR
     The  last  sector  of the indicated file did not correspond to that
     specified in the directory.

FILE: file name, FILE SIZE ERROR
     The size of the indicated file did  not  correspond  to  the  value
     specified in the directory.

SECTORS NOT FOUND: nn
     "nn"  is  a  count  of  the  number of sectors which were not found
     during the validation process.

SYSTEM INFO SECTOR INVALID
     The diagnostic could not read the system information sector on  the
     diskette.

ADDRESS ttss, PREMATURE END OF DIRECTORY
     At  disk  address  "ttss"  in the directory, a zero entry was found
     indicating the end of the directory.  However, additional directory
     entries were found beyond that point.

FILE: file name, ADDRESS: ttss, ILLEGAL SECTOR MAP
     The  directory  entry  for  the  file indicated that the file was a
     random file.  However, the file sector map at disk  address  "ttss"
     did not have a zero record number, as required.

FILE CONFLICT: file name/file name
     The  specified  files intersect.  One of the files will probably be
     named in another error message.

ILLEGAL DRIVE NUMBER
     An illegal drive number  was  specified  to  the  diagnostic  as  a
     parameter.

DRIVE MUST BE SPECIFIED
     The  diagnostic was called without an argument and the default work
     drive was set to "all".  The diagnostic will check only one  drive,
     so in this case, a drive must be specified.

FILE: file name, ADDRESS ttss, BAD LINK
     The  sector at disk address "ttss" in.the specified file contains a
     forward link that is outside of the permissible value for  a  track
     and sector for the type of diskette being tested.

ADDRESS: ttss, DRIVE NOT READY
     A  "not ready" response was received from the disk controller when
     the sector at disk address "ttss" was being read.

                                  -84-



                                                   6809 FLEX DIAGNOSTICS

ADDRESS: ttss, SECTOR NOT FOUND
     The sector specified by disk address "ttss" could not be located by
     the disk controller.  This normally indicates damage to the address
     portion of the sector.

ADDRESS: ttss, CRC ERROR
     A checksum error was detected by the disk controller while  reading
     the sector at disk address "ttss".

FILE: file name, NULL FILE
     The specified file contains no data.

FILE file name, ADDRESS ttss, RECORD NUMBER ERROR
     The  sector  at  disk  address "ttss" in the specified file did not
     contain the expected record number.  Record numbers should increase
     by one along the length of the file.

FILE file name, ADDRESS ttss, SECTOR MAP ERROR
     The  sector  at  disk  address  "ttss" in the indicated random file
     contains a link to a sector which is not in the file sector map.

VALIDATION COMPLETED
     The diagnostic is finished.

VALIDATION ABORTED
     The diagnostic detected an error of such a magnitude that it  could
     not  complete  its  task.   Such  errors include: checksum error, a
     sector could not be found by the disk  controller,  the  drive  not
     being ready, and the system information sector being damaged.

REMARKS:

VALIDATE  assumes that the diskette does not contain files with checksum
errors or sectors that cannot be located by the disk controller.  If any
such  sectors  are  found,  a  message  is  issued and the diagnostic is
aborted.  The routines TEST and FILETEST can be used to determine if any
such sectors exist.  If the system information sector cannot be read, or
contains anomalous values, the diagnostic is also aborted.

Bad sectors that were removed by NEWDISK or FLAW will be included in the
count of sectors that were not found since they were  not  in  the  free
chain  or  a  file.  The number of bad sectors should be subtracted from.
this count to determine how many "orphaned" sectors there are.

This   diagnostic   takes   2  minutes  to  check  an  8"  single-sided,
single-density diskette.  Double-sided and double-density diskettes take
proportionately longer.

Some controllers for 5 1/4" diskettes will hang if the the drive is  not
ready or the sector cannot be located by the controller.  Owners of such
hardware should be aware that this might be the cause of the  diagnostic
apparently hanging up.

                                  -85-



6809 FLEX DIAGNOSTICS

VALIDATE will only function correctly  on  the diskette configurations
listed in the "System Dependencies" paragraph in the section "The Disk
Utilities in this Package".  It will not work on a hard disk.

                                  -86-



                              CASE STUDIES

                                  -87-



6809 FLEX DIAGNOSTICS

                                  -88-



                                                   6809 FLEX DIAGNOSTICS

                              CASE STUDIES

     The  following  examples  are  intended to demonstrate how the disk
utilities in this package can be used to ident@ify and sometimes correct
problems.   It should be stressed that these programs cannot correct all
problems.  There are situations in which data  has  been  destroyed  and
cannot  be  salvaged.  Proper identification of the problem is important
in determining if the data can be saved.  Such  identification  must  be
based  on  interpretation  of  the  messages  issued by the diagnostics.
This, as well as some tricks, are stressed in the cases considered.

     When  attempting  to  salvage damaged data, it is important to take
into consideration the amount of work involved in the recovery  process.
It  may  be faster to reconstruct the data from backups than it would be
to salvage the damaged data and repair it.   After  you  have  recovered
damaged data a few times you will be able to judge which option is best.

                                  -89-



6809 FLEX DIAGNOSTICS

                      CASE I: A Simple Read Error

     Assume  that  while  assembling a program, you get the message DISK
FILE READ ERROR while reading the file LOAD.TXT from the disk  in  drive
1.   The disk containing the utilities is in drive 0.  The problem is to
recover as much data as possible from the file.

     The  first  step  is to try to read the file on another disk drive.
The mechanical differences among drives are sometimes enough  to  enable
one  to  read  an  intermittent bad spot that another drive cannot read.
The FILETEST utility can be used to read the file.  If it does  not  get
an  error,  the file can then be copied to another disk.  If it does get
an error, then FILETEST will tell you the  disk  address  that  has  the
error.  Switching the system and work disks, we try FILETEST.

+++1.FILETEST 0 LOAD.TXT                <Remember, we switched disks so we
                                         specify the drive numbers.>
0.LOAD.TXT READ ERROR TRACK/SECTOR 04/07
TESTING COMPLETED

The file cannot be read on another drive, so we have to try  to  recover
the data.    Remember  the  track and sector containing the error, we'll
come back to it later.  Putting the disks back in the  original  drives,
copy the file using RAWCOPY.

+++RAWCOPY LOAD.TXT LOADX.TXT
ADDRESS: 0407, CRC ERROR
COPY COMPLETED

The  file  LOADX.TXT  now  contains  a readable copy.  However, there is
probably some damage to the data in  that  file  because  of  the  error
detected  while  reading the old file.  If the file is short it would be
easiest to bring up an editor and look for the damaged  data.     On the
other  hand, if the file is long- the damage might be hard to find.  The
EXAMINE utility can be used to read the bad sector, which will  give  us
some idea of where the damage is located.  By looking at the data in the
bad sector, we may be able to see what the damage is like and  where  in
the  program the damaged code is located.  From this information, we can
go to the same spot in the good copy of the file to see what needs to be
corrected.

                                  -90-



                                                   6809 FLEX DIAGNOSTICS

+++EXAMINE                              <Default to the work drive>
COMMAND: D 0407                         <Dump the bad Sector>
ADDRESS: 0407, CRC ERROR

DISK ADDRESS: 0407
   -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F                 
0- 04 08 00 0A 54 0D 20 42 56 53 20 42 59 54 45 31 ____T_ BVS BYTE1
1- 20 49 46 20 45 52 52 4F 52 0D 20 50 53 40 53 20  IF ERROR_ PS@S 
2- 42 20 41 53 53 45 4D 42 4C 45 20 42 59 54 45 0D B ASSEMBLE BYTE_
3- 20 41 44 44 41 20 30 2C 53 2B 0D 42 59 54 45 31  ADDA 0,S+_BYTE1
4- 20 52 54 53 20 52 45 54 55 52 4E 0D 20 53 50 43  RTS RETURN_ SPC
5- 20 34 0D 2A 2A 09 03 44 49 47 20 2D 20 41 53 53  4_**__DIG - ASS
6- 45 4D 42 4C 45 20 44 49 47 49 54 2E 0D 2A 0D 2A EMBLE DIGIT._*_*
7- 09 04 45 58 49 54 09 02 56 53 20 49 46 20 45 52 __EXIT__VS IF ER
8- 52 4F 52 20 44 45 54 45 43 54 45 44 0D 2A 09 0A ROR DETECTED_*__
9- 56 53 20 49 46 20 4E 4F 20 45 52 52 4F 52 2C 20 VS IF NO ERROR, 
A- 41 4E 44 0D 2A 09 0A 28 41 29 3D 44 49 47 49 54 AND_*__(A)=DIGIT
B- 0D 20 53 50 43 20 32 01 44 49 47 20 42 53 52 20 _ SPC 2_ DIG BSR
C- 49 4E 43 48 20 47 45 54 20 43 48 41 52 41 43 54 INCH GET CHARACT
D- 45 52 0D 20 42 56 53 20 44 49 47 31 20 49 46 20 ER BVS DIG1 IF  
E- 45 52 52 4F 52 0D 20 53 55 42 41 20 23 27 30 20 ERROR_ SUBA '0  
F- 43 48 45 43 4B 20 44 49 47 49 54 0D 20 42 4C 4F CHECK-DIGIT_ BLO

COMMAND:  S

At byte $1D, we see that an "H" has been changed to a "@".  The rest  of
the  sector  looks good, there are no other errors.  (it is important to
check the whole sector, more than one byte may be  damaged.)  With  this
information,  we  can edit LOADX, look for "PS@S", and change it back to
"PSHS".

     The  problem  now  is  what to do with the bad file.  We can simply
forget about it, but then the good sectors in the file cannot be  reused
by  other  files.   If  the bad sector is not the first sector, then the
good sectors can be reclaimed by deleting the file,  and  then  removing
the  bad sector from the free chain with the FLAW utility.  If the error
is in the first sector of the file, it will not be possible to delete it
without  causing  more  damage  to  the  disk.  By looking at the record
number bytes, we see that this is the tenth sector in  the  file  (bytes
2-3 of the sector are 000A).  Therefore we can delete it.

+++DELETE LOAD.TXT
DELETE "1.LOAD.TXT" ? Y
ARE YOU SURE?  Y
+++FLAW 1                               <It is not necessary to specify
                                         the bad sector if it has an
                                         error in it.>
ERROR WHILE READING 0407
"FLAW" FINISHED

If the bad sector had been the first sector of the file, then  the  best

                                  -91-



6809 FLEX DIAGNOSTICS

course  of  action  would  be  to copy  everything  to  a good disk and
re-initialize the bad one.   This may seem like a lot  of  work just to
recover from a read error, but it really does not take a long time.

      The most important thing to note in this case is the  procedure of
first  identifying  exactly where the problem is located (sector 0407 in
the file LOAD.TXT), then recovering the  data,  and  finally,  repairing
the damage caused by the error.

                                  -92-



                                                   6809 FLEX DIAGNOSTICS

                  CASE II: A "Sector Not Found" Error

     While  reading  a disk, a DRIVE NOT READY message appeared, yet the
drive was ready.  Unfortunately, we don't  know  which  file  was  being
read.   The first step is to isolate the problem using FILETEST.

+++FILETEST +A                           <Use the "A" option to check
                                          all of the files>
1.ELECTRIC.TXT CANNOT LOCATE 1A/05
TESTING COMPLETED

     This is a very bad error.  It means that the address field in front
of  the  data in the sector cannot be read.  In many cases, this type of
error produces a "not ready" condition.  There is very little  that  can
be  done  to  save  the  data  since the disk controller cannot find the
sector.

      The   address    field   cannot   be repaired,  the  disk must  be
re-initialized.  The front of the file ELECTRIC.TXT can be  salvaged  by
using  RAWCOPY, as in CASE I.  The copy will stop when the bad sector is
reached.  There is a "desperation" technique that can be used to recover
the  back  end  of  the file, but it is very time-consuming and a lot of
work.   This is investigated in a later case.

                                  -93-



6809 FLEX DIAGNOSTICS

                   CASE III: Recovering a Random File

     A data  disk  containing  a  random  file  has  had  its  directory
destroyed.   You  know  from  a printed output from the DIR utility (not
part of this package), that the file starts at disk address 0204, and is
28  sectors  long.  The problem is to recover the random file to another
disk.

     There  are  two  ways to recover the file.  The REBUILD utility can
recover all of the files on  the  disk,  and  the  RECOVER  utility  can
recover just the random file.  We will look at both ways.

     Using the REBUILD utility, we will recover all of the files on  the
disk.

+++REBUILD 0 1                          <Bad disk in 0, good disk in 1>
INSERT DISKS, HIT ANY KEY
1.FILE0001.SCR  0102  10 SECTOR(S)
1.FILE0002.SCR  0206  26 SECTOR(S)
1.FILE0003.SCR  1001  1 SECTOR(S)
1.FILE0004.SCR  1002  16 SECTOR(S)
RECOVERY COMPLETED

     One  of these files is the data from our random file.  REBUILD does
not recover the file sector map, so the length of the new file will be 2
sectors  shorter  than  the  original file.  FILE0002.SCR appears to the
one.  If we are not sure, we could use EXAMINE to dump  the  file.   The
disk  with  the  damaged  directory  can  be  put aside, it is no longer
needed.

     The next step is to put a file sector map on the copy of our random
file.  The COPYR utility is designed to do this.

+++COPYR FILE0002,DATA.DAT

The file DATA.DAT now contains the random file, in its entirety.

     The  other method of recovering the random file involves the use of
the RECOVER command.  RECOVER starts at the disk address that you enter,
and  copies  every sector.    We  cannot  start it at the original first
sector (0204), because this is the address of the file sector map.    We
do  not  want to copy the file sector map exactly, because it would then
not reflect the layout of the file.  A file sector map  must  be  built,
not copied.  The trick is to use EXAMINE to read the file sector map and
determine the first sector that contains data.

                                  -94-



                                                   6809 FLEX DIAGNOSTICS

+++EXAMINE                              <Crashed disk in work drive>
COMMAND: D 0204                         <Dump the first sector>

DISK ADDRESS: 0204
   -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0- 02 04 00 00 02 06 1A 00 00 00 00 00 00 00 00 00 ________________
1- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
2- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
3- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
4- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
5- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
6- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
7- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
8- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
9- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
A- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
B- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
C- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
D- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
E- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________
F- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ________________

COMMAND: S

     By looking at  the file sector map, we see that the data itself
starts in sector 0206.
This is the value that we will give to RECOVER.

+++RECOVER  0 1                         <Bad disk in 0, good disk in 1>
INSERT DISKS, HIT ANY KEY
DISK ADDRESS: 0206                      <Enter the starting address of
                                         the data>
FILE NAME: DATA.SCR                     <Put it on a scratch file>
DISK ADDRESS:                           <Enter carriage return to exit>

     Now that the data is recovered, the old disk can be put aside.   The
COPYR utility  is used, as in the first part of this  case,  to  build  a
file sector map on the recovered file.

+++COPYR DATA,DATA.DAT

The file DATA.DAT now contains the random file in its entirety.

                                  -95-



6809 FLEX DIAGNOSTICS

                     CASE IV: A Structural Problem

     While  editing the file CPINT, the message ALL AVAILABLE DISK SPACE
HAS BEEN USED appeared.  There should have been plenty of space  on  the
disk,  so  there must be a structural problem.  Running the CAT command,
we get:

CATALOG OF DRIVE NUMBER 1
DISK:   #0

 NAME  TYPE SIZE PRT

CPINT  .BAK   95
CPINT  .TXT   47
CPINT  .BIN    4
GTCVT  .CMD    1
GTCVT  .BAK    7
GTCVT  .TXT    7

SECTORS LEFT = 0

     Comparing  the  sizes  of  CPINT.TXT and CPINT.BAK, we see that the
file that was being edited is badly truncated.   If  the  .BAK  file  is
still  intact, we might be able to salvage something.  The first step is
to find out the extent of the damage using the VALIDATE command.

+++VALIDATE                              <Bad disk is in working drive>
FILE: 1.CPINT.BAK, ADDRESS: 180A, RECORD NUMBER ERROR
FILE: 1.CPINT.BAK, FILE SIZE ERROR
FILE CONFLICT: 1.CPINT.BAK/1.CPINT.TXT
SECTORS NOT FOUND: 1032
VALIDATION COMPLETED

     The  file  CPINT.BAK  has  some  serious  problems  with it.  It is
obvious that the file has been overwritten or gotten linked into another
file.   The  1032  sectors  that  couldn't  be  located are probably the
sectors  in the free chain. We can get another look  at  the  damage  by
printing the file chains using FILETEST.

+++FILETEST +M CPINT.TXT CPINT.BAK

1.CPINT.TXT 13/0C 13/0D 13/0E 13/0F 14/01 14/02 14/03 14/04 14/05
   14/06 14/07 14/08 14/09 14/0A 14/0B 14/0C 14/0D 14/0E 14/0F 15/01
   15/02 15/03 15/04 15/05 15/06 15/07 15/08 15/09 15/0A 15/0B 15/0C
   15/0D 15/0E 15/0F 16/01 16/02 16/03 16/04 16/05 16/06 16/07 18/0A
   13/07 13/08 13/09 13/0A 13/0B

                                  -96-



                                                   6809 FLEX DIAGNOSTICS

1.CPINT.BAK 12109 1210A 12/0B 12/0C 12/0D 12/0E 12/0F 13/01 13/02
   13/03 13/04 13/05 13/06 16/0B 16/0C 16/0D 16/0E 16/0F 17/01 17/02
   17/03 17/04 17/05 17/06 17/07 17/08 17/09 17/0A 17/0B 17/0C 17/0D
   17/0E 17/0F 18/01 18/02 18/03 18/04 18/05 18/06 18/07 18/08 18/09
   18/0A 13/07 13/08 13/09 13/0A 13/0B
1.CPINT.BAK SECTOR COUNT ERROR, EXPECTED 95, ACTUAL 48

     Our worst fears are justified.  Both the .TXT  file  and  the  .BAK
file  have been  destroyed.    There is no hope of recovering any of the
data.  Perhaps the "desperation"  method,  described  later  on  may  be
useful, but that may be as much work as retyping the entire file.

     It is quite likely that the damage to the disk was done  some  time
ago  and  only manifested itself recently by destroying these two files.
Structural problems do not go away, they only get worse.   If,  at  some
time  in the past, VALIDATE was run on this disk, the problem might have
been detected before it destroyed both files.  Disks  that  are  heavily
used  for  editing should be checked periodically with VALIDATE, just in
case.  VALIDATE should definitely be run on a disk  if  the  machine  is
reset  while  the  disk is being written, or if a power failure occurred
while the disk was in the machine.  It only takes 5 to 10 minutes to run
and  it  could  save  a  lot  of  work later on if a structural error is
detected early.

                                  -97-



6809 FLEX DIAGNOSTICS

              CASE V: Rehabilitating a Bad Directory Chain

     A new disk could not be formatted by NEWDISK.   The  message  FATAL
ERROR - FORMATTING ABORTED always appeared.  The problem is to determine
if the disk can be salvaged.

     The  first  problem  is  to  determine what kind of problem that we
have.  The TEST utility is the tool to use.

+++TEST                                 <Bad disk is in work drive>
SYSTEM INFO SECTOR INVALID              <This is to be expected. The
                                         system info sector had not
                                         been created by NEWDISK.>
MAXIMUM TRACK/SECTOR READ: 00/00
ARE THESE ACCEPTABLE? N
HARD DISK OR FLOPPY DISK (H/F): F
DISKETTE SIZE (5/8): 8                  <Assume 8 inch, single-sided,
                                         single-density>
SINGLE OR DOUBLE SIDED (S/D): S
SINGLE OR DOUBLE DENSITY (S/D): S

ADDRESS: 000A, CRC ERROR
TEST COMPLETED

     The problem is that  we have a bad sector in  the  directory track.
If  this sector can be removed, and the system information sector built,
then the disk would be usable.  It would not be the same as  if  NEWDISK
had  initialized  it, but it would suffice for a scratch disk.  It would
not be possible to remove this sector if it  were  the  first  directory
sector  (0005);  but  since  it  is  not,  it can be removed with little
effort.  The first thing to do is outline  the  exact  procedure  to  be
followed.

     1) Remove the bad sector from the chain
     2) Break  off  the  directory  chain  from  the  free chain.  Since
        NEWDISK did not finish, the entire disk is  linked  together  in
        the  free chain.    We  have to break off the directory from the
        rest of the free chain.
     3) Insert data into the system information sector.

The EXAMINE utility will be used to perform the above operations.

+++EXAMINE                               <The disk is in the work drive>
SYSTEM INFO SECTOR INVALID               <This is to be expected. The
                                          system info sector had not
                                          been created by NEWDISK.>
MAXIMUM TRACK/SECTOR READ: 00/00
ARE THESE ACCEPTABLE? N
HARD DISK OR FLOPPY DISK (H/F): F
DISKETTE SIZE (5/8): 8                   <Assume 8 inch, single-sided,
                                          single-density>
SINGLE OR DOUBLE SIDED (S/D): S

                                  -98-



                                                   6809 FLEX DIAGNOSTICS

SINGLE OR DOUBLE DENSITY (S/D): S
COMMAND: R 9                             <Read in sector 0009>
COMMAND: M                               <Modify starting at byte 0>
00 00 .                                  <This byte is unchanged>
01 0A 0B                                 <Sets link from, 000A to 000B>
02 00                                    <Carriage return typed>
COMMAND: W                               <Update the sector>
COMMAND: R F                             <Read sector 000F>
COMMAND: M                               <Modify starting at byte 0>
00 01 00                                 <Set link to 0000>
01 01 00
02 00                                    <Carriage return typed>
COMMAND: W                               <Update sector. This breaks
                                          the directory from free chain>
COMMAND: R 3                             <Read system info sector>
COMMAND: M 1                             <Modify starting at byte 1>
01 04 00                                 <Set link to 0000>
02 00                                    <Carriage return typed>
COMMAND: M 1D                            <Modify starting at byte $1D>
1D 00 01                                 <Set start of free chain
1E 00 01                                   to 0101>
1F 00 4C                                 <Set end of free chain
20 00 0F                                   to 4C0F (values for 8 inch
                                           single-sided, single density
                                           diskette>
21 00 04                                 <Set free sector count to 1140
22 00 74                                  (0474 hexadecimal)>
23 00 .                                  <Ignore next 3 bytes>
24 00 .
25 00 .
26 00 4C                                 <Set maximum track>
27 00 0F                                 <Set maximum sector>
28 00                                    <Carriage return typed>
COMMAND: W                               <Update system info sector>
COMMAND: S

     Just to be safe, VALIDATE should be run on the disk.  If a  mistake
has been made, VALIDATE will spot it.  If the disk had other bad sectors
in addition to the one in the directory, FLAW should be  run  to  remove
them  from  the  free  chain.   Note that this disk does not have a boot
program on it, so it cannot be used as a system disk.

                                  -99-



6809 FLEX DIAGNOSTICS

                      CASE VI: A Desperate Measure

     As we have seen in some of the previous cases, it is  possible  for
data  to  be  damaged such that recovery is impossible.  If the data has
not actually been overwritten, but is merely  "lost"  somewhere  on  the
disk, with nothing pointing to it, it may be possible to recover some of
it by a rather arduous process.  This technique is  very  time-consuming
and  should only be used as a last resort to recover extremely important
data.

     In  essence,  the  technique  involves using the EXAMINE utility to
dump every sector on the disk, looking for the data.  Once it is  found,
RECOVER  can be used to retrieve it.  It is obvious that this could take
a long time since there are hundreds, even thousands, of sectors on some
disks.   There are, however, some tricks which can be used to lessen the
work involved to a slight degree.  If the directory is still intact, the
first  step  is  to  run  FILETEST,  to  print out all of the known file
chains.  If you have a printer, this is easy; if  you  don't,  you  will
have  to  copy  them  all down by hand.  The command FILETEST +ADFM will
print out the chains.

     The next step is to determine which sectors have not been listed by
FILETEST.  This is a manual operation and simply involves looking at the
list of sectors that are in known chains, and writing down those sectors
that are not in any of the chains.  The data is  somewhere  among  these
sectors.   By  using  EXAMINE, look at those sectors that are not in any
chain.  The "C" command is useful for dumping several sectors at a  time
since  the  "lost" sectors still form chains amongst themselves.  Keep a
careful record of those sectors that you have examined, and  whether  or
not they appear to be part of the data for which you are searching.  You
must be careful since there may be older versions of  the  data  on  the
disk.  Once you have identified the data, you can use RECOVER to copy it
to another disk.

     As  mentioned  earlier,  this  is  an extremely arduous process and
should be used only as a last resort.  Having to go through this process
is a painful lesson that could be avoided by having several backup disks
of important information.

                                 -100-



                                                   6809 FLEX DIAGNOSTICS

                            COMMAND SUMMARY

MEMORY DIAGNOSTICS

CONVERGE <starting address>,<ending address>
DYNAMIC <starting address>,<size in 1024 byte blocks>
QUICK <starting address>,<ending address>
RANDOM <starting address>,<ending address>
WALK0 <starting address>,<ending address>
WALK1 <starting address>,<ending address>

DISK UTILITIES

COPYR <file specification>,<file specification>
EXAMINE <drive number>
     R,<sector address>                 (Read a sector)
     W,<sector address>                 (Write a sector)
     D,<sector address>                 (Dump a sector)
     C,<sector address>                 (Dump sector chain)
     M,<byte number>                    (Modify buffer contents)
     F,<file specification>             (Read first sector of file)
     B,<file specification>             (Build link table for file)
     T,<address>,<address>,<count>      (Move data in memory)
     S                                  (Return to FLEX)

FILETEST <drive number and options>,<file name list>
FLAW <drive number>,<list of sectors>
RAWCOPY <file specification>,<file specification>
REBUILD <drive number>,<drive number>
RECOVER <drive number>,<drive number>
TEST <drive number>
UNDELETE <drive number>
     D  (Dump current file)
     N  (Proceed to Next Older File)
     P  (Go Back to Previous File)
     R  (Recover file)
     S  (Return to FLEX)

VALIDATE <drive number>

                                 -101-




