
Technical Systems Consultants, Inc.

 FLEX 6809
Relocating Assembler

Flex User Group
This document has been created
on behalf of the FLEX User Group
to keep FLEX Alive.

Many thanks to the copyright holder
of this manual for releasing the
copyright to the Flex User Group.

Table of Contents

 Page

 I. Introduction 1

 II. Getting the System Started 6

 III. Assembler Operation 13

 IV. The Instruction Set 22

 V. Standard Directives 35

 VI. Conditional Assembly 47

 VII. Macros 51

VIII. Special Features 60

 IX. Error and Warning Messages 67

 X. Adapting to Your System 70

 XI. Appendix A: List of Prime Numbers from 773 to 2239 73

-iii-

I. INTRODUCTION

This manual describes the operation and use of the 6809 Relocating
Mnemonic Assembler for the 6809 FLEX Disk Operating System. The
assembler accepts all standard Motorola mnemonics for the 6809
instruction set as well as all standard 6800 and 6801 mnemonics.
Relocation, external references, macros and conditional assembly are
supported as well as numerous other directives for convenient assembler
control. The assembler executes in two passes and can accept any size
file so long as sufficient memory is installed to contain the symbol
table. Output is in the form of a relocatable binary disk file as well
as an assembled listing output which may be routed to a printer or to a
disk file through the facilities of FLEX.

This manual is by no means intended to teach the reader assembly
language programming nor even the full details of the 6809 instruction
set. It assumes the user has a working knowledge of assembly language
programming and a manual describing the 6809 instruction set and
addressing modes in full. The former can be acquired through any of a
large number of books available on assembly programming, the latter from
the 6809 hardware manufacturer or seller.

Throughout the manual a couple of notational conventions are used which
are explained here. The first is the use of angle brackets (’’ and
’’). These are often used to enclose the description of a particular
item. This item might be anything from a filename to a macro parameter.
It is enclosed in angle brackets to show that it is a single item even
though the description may require several words. The second notation
is the use of square brackets (’[’ and ’]’). These are used to enclose
an optional item.

Absolute Assemblers

An absolute assembler, such as the FLEX "ASMB", produces absolute
machine code in which all addresses will be correct only if the program
is loaded at the specified locations. For example, a program ORG’ed at
$1000, contains a JMP instruction. At execution time, control will be
transfered to the intended location by the JMP statement only if the
program resides at $1000.

FLEX is a trademark of Technical Systems Consultants, Inc.

FLEX 6809 Relocating Assembler

-1-

Consider the following program:

 * cntchar - count the number of characters
 * in a null terminated string.
 *
 * exit (b)=count of the characters

 1000 ORG $1000
 1000 8E 100D CNTCHAR LDX #STRING GET ADDR OF STRING
 1003 5F CLRB SET COUNT TO ZERO
 1004 A6 80 LOOP LDA 0,X+ GET A CHARACTER
 1006 27 04 BEQ DONE IF END OF STRING
 1008 5C INCB COUNT THE CHARACTER
 1009 7E 1004 JMP LOOP GET NEXT CHARACTER

 100C 39 DONE RTS RETURN
 100D 48 4F 57 20 STRING FCC ’HOW MANY CHARS ?’,0

The program segment will work as intended only if it is loaded at $1000.
If CNTCHAR was instead loaded at $2000, at the time the JMP instruction
is encountered, control would transfer to $1004; however, we would
intend for control to go to $2004.

Suppose it is not possible to know the starting location of a program
segment. Such would be the case if each member of a team of programmers
was responsible for developing a program segment. Since each segment is
being developed independently of the others, it is not possible to know
where one segment ends and, therefore, where the next is to begin.

Position Independence VS. Relocatability

The 6809 instruction set offers one solution to this problem. PC
relative addressing uses the Program Counter (PC) register as an index
register in much the same manner as X,Y,U, or S is used as an index
register. PC relative addressing generates. offs@ts (or indexes) based
on the current PC value. Using this addressing mode, the program will
work as intended regardless of its position in memory. We can make
CNTCHR position independent by replacing the JMP instruction with BRA,
and LDX immediate with LEAX (PC offset indexing). Our position
independent version of CNTCHR would look like this:

FLEX 6809 Relocating Assembler

-2-

 * cntchar - count the number of characters
 * in a null terminated string.
 *
 * exit (b)=count of the characters

 1000 ORG $1000
 1000 30 8D 0009 CNTCHAR LEAX STRING,PCR GET ADDR OF STRING
 1004 5F CLRB SET COUNT TO ZERO
 1005 A6 80 LOOP LDA 0,X+ GET A CHARACTER
 1007 27 03 BEQ DONE IF END OF STRING
 1009 5C INCB COUNT THE CHARACTER
 100A 20 F9 BRA LOOP GET NEXT CHARACTER
 100C 39 DONE RTS RETURN
 100D 48 4F 57 20 STRING FCC ’HOW MANY CHARS ?’,0

Notice that this CNTCHAR contains no references to absolute addresses.
It will execute as intended regardless of where it is placed in memory.
In general, however, position independent code contains more op code
bytes and takes longer to execute than absolute code. Also, the
programmer must make an effort not to use certain instructions, or
restrict usage to particular addressing modes, so that the rules of
postion independence are not violated. All code, on the other hand, can
be considered "relocatable" when assembled using a Relocating Assembler.

Relocating Assemblers and Loaders

Relocatable code is generated by a relocating assembler in such a way
that addresses are not bound to absolute locations at "assembly time";
this binding of the address fields is deferred until "load time". A
Relocating Loader binds the addresses at the time the program is brought
into memory (loaded) to be executed. The binding or adjustment of the
address fields is termed relocation. Because any code can be considered
"relocatable", one can take advantage of the-speed and space savings of
absolute code, with the adjustment of the address fields deferred until
load time.

To illustrate how the Relocating Assembler and Linking-Loader work in
conjunction with each other, we will present another version of CNTCHAR.
Note that it does not contain any ORG statements, and that the code
starts at location 0.

FLEX 6809 Relocating Assembler

-3-

 * cntchar - count the number of characters
 * in a null terminated string.
 * exit (b)=count of the characters

 + 0000 8E 000D CNTCHAR LDX #STRING GET ADDR OF STRING
 0003 5F CLRB SET COUNT TO ZERO
 0004 A6 80 LOOP LDA 0,X+ GET A CHARACTER
 0006 27 04 BEQ DONE IF END OF STRING
 0008 5C INCB COUNT THE CHARACTER
 +0009 7E 0004 JMP LOOP GET NEXT CHARACTER

 000C 39 DONE RTS RETURN
 000D 48 4F 57 20 STRING FCC ’HOW MANY CHARS ?’,0

A plus sign in front of an instruction indicates that the address field
of that instruction must be increased by a "relocation constant". The
"relocation constant" is the address at which the program is loaded for
execution. For example, if the above program was loaded at $1000, the
two relocatable address fields marked by "+" must each be increased by
$1000 in order for the program to execute as intended. The address
referred to by the first instruction would be $000D+$1000=$100D, which
would now correctly point to STRING.

Address fields which do not require relocation are absolute addresses
(their values remain the same regardless of the position of the program
in memory). Since the loader does not have access to the source text,
it cannot determine if an address field is absolute or relative
(relocatable). In fact, it cannot distinguish addresses from data.
Therefore, the assembler must indicate to the loader the address fields
which require relocation. This communication is accomplished through
"relocation records" which are appended to the object code file produced
by the assembler. Such a file is called a "relocatable object code
module".

Linking-Loaders

As discussed previously, it is necessary or desirable for parts of a
program (modules) to be developed separately. Each module must be
assembled and tested separately prior to final merging of all the
modules. During this merging process of the modules, it is necessary to
resolve references in a module which refer to addresses or data defined
in another. The resolution of "external references" is called linking.
The assembler must provide information to the linker, in a manner
similar to relocation records, concerning the address fields which must
be resolved.

FLEX 6809 Relocating Assembler

-4-

Since the production of relocation records and external records are
similar processes, both of these features are often included in a
relocating assembler. A linking-loader is a program which can take the
output of a relocating assembler (object code, relocation records, and
external records) and produce executable object code. Linking-loaders,
therefore, can perform the following tasks:

 1) load a relocatable object code module into memory,
 2) relocate any relative address fields,
 3) resolve any external references, and
 4) optionally execute the resultant program.

At this time a few definitions would be in order. A global symbol is a
location within a module that can be referenced from other separate
modules. Each global symbol has a unique name associated with it. The
linking-loader is given a list of the global symbols in each module. An
external reference is a reference in one object module to a global
symbol in another object module. And finally, a common block is a block
that can be declared by more than one object module. The data used in
the common blocks is "common" to all of the modules that have declared
the common block.

FLEX 6809 Relocating Assembler

-5-

II. GETTING THE SYSTEM STARTED

The FLEX 6809 Relocating Mnemonic Assembler is very simple to use.
There are no built-in editing functions - you must have a previously
edited source file on disk before using the assembler. This file must
be a standard FLEX text file which is simply textual lines terminated by
a carriage return. There should be no line numbers or control
characters (except for the carriage returns) in the file. When you have
both the assembler and the edited source file on a disk or disks which
are inserted in a powered up system, you are ready to begin.

The Command Line

The very minimum command line necessary to execute an assembly is as
follows:

 +++RELASMB,<filename>

The three plus signs are FLEX’s ready prompt, RELASMB is the name of the
relocating assembler file (it has a .CMD extension), and the <filename>
is the standard FLEX specification for the source file you wish to
assemble. The <filename> defaults to a .TXT extension and to the
assigned working drive if an explicit extension and drive number are not
given. In this and forthcoming example command lines, a comma is used
to separate items. It is also possible to use a space or spaces in this
capacity.

As stated, this is the very minimum command which can be used. It is
possible to supply many more parameters or options to the assembler, but
if left off as in this example, the assembler will assume default
parameters. Perhaps the most important options available are the two
associated with output. We say two because there are two types of
output available from the assembler: object code output and assembled
source listing output. The options regarding the assembled source
listing output will be described a little later.

The object code can be in the form of a relocatable binary disk file or
no object code output at all. Since no specifications are made
concerning object code output in the above example, the assembler will
assume the default case which is a relocatable binary disk file. Since
no name was specified, the output binary file will assume the same name
as the input source file specified but with a .REL extension. If such a
file already exists, you will be asked:

FLEX 6809 Relocating Assembler

-6-

 Delete Old Binary (Y-N)?

to which you may respond ’Y’ which will delete the existing file and
continue to create the new file or ’N’ which will immediately terminate
the assembly, returning to FLEX with the old binary file remaining
intact.

If you wish to create a binary file by another name or extension, you
may do so by placing the desired file specification on the command line
as follows:

 +++RELASMB,<input file spec>[<binary file spec>][,+<option list>]

This binary file specification will default to a .REL extension and to
the assigned working drive. If a file by that name already exists on
the specified drive, you will be prompted as described above.

A temporary scratch file is created to hold the external and relocation
records that are produced during assembly. This file is only created if
a binary file is being produced. The name of this file will be the name
of the source input file with a .SCR extension. If this file should
happen to exist, the assembler will prompt the user:

 Delete Old Scratch File (Y-N)?

A response of N will abort the assembly. Normally, this file will be
automatically created and deleted by the assembler. This scratch file
will exist on the same drive as the binary output file. Please ensure
that there is room on the disk for the binary output file, this
temporary scratch file and the cross-reference information file if it is
selected.

Specifying Assembly Options

Now we shall go one step further and add a set of single character
option flags which may be set on the command line as follows:

 +++RELASMB,<input file spec>,<binary file spec>][,+<option list>]

The square brackets indicate that the binary file spec and the option
list are optional. The plus sign is required to separate the option
list from the file specifications. The <option list> is a set of single
character flags which either enable or disable a particular option. In
all cases they reverse the sense of the particular option from its
default sense. There may be any number of options specified and they
may be specified in any order. There may not be spaces within the
option list. Following is a list of the available options and what they
represent:

FLEX 6809 Relocating Assembler

-7-

A Causes the absolute address of all relative branches to be printed
 in the object code field of the assembled output listing.

B Do not create a binary file on the disk. No binary file will be
 created even if a binary file name is specified. This is useful
 when assembling a program to check for errors before the final
 program is completed or when obtaining a printed source listing.

D Suppress printing of the date in the header at the top of each
 output page. The assembler normally picks up the current date
 from FLEX and prints it in the header. This option causes the
 date to be omitted.

F Enable debug or Fix mode. There are two forms of line comments.
 One begins with an asterisk (*) the other with a semicolon (;),
 both in the first column of the source line. If the comment
 begins with a semicolon, the F option will instruct the assembler
 to ignore the semicolon and process the line as though the
 semicolon never existed. The asterisk in the first column of a
 source line will always denote a comment regardless of the state
 of this option.

G Turns off printing of multiple line object code instructions.
 Certain directives (FCB, FDC, and FCC) can produce several lines
 of output listing for only one instruction line. This option
 prints the first line of output from such an instruction (the line
 which contains the source) but suppresses the printing of the
 subsequent lines which contain only object code information.

I Enable the appending of all internal symbols. Normally, the
 relocating assembler will append only the global symbol table
 information to each binary output module. This is then used by
 the linking-loader to resolve externals. By specifying this
 option, all of a source module’s symbol table information is
 appended to its binary module. The one exception to this is
 symbol table information for external symbols; this is never
 written out in the symbol table section of the binary modules.
 This will be useful in symbolic debugging.

L Suppress the assembled listing output. If not specified, the
 assembler will output each line as it is assembled in pass 2,
 honoring the ’LIS’ and ’NOL’ options (see the OPT directive).
 Those lines containing errors will always be printed regardless of
 whether or not this option is specified.

FLEX 6809 Relocating Assembler

-8-

N Enables the printing of decimal line numbers on each output line.
 These numbers are the consecutive number of the line as read by
 the assembler. Error lines are always output with the line number
 regardless of the state of this option.

O Limit all symbols to only six characters internally. Normally,
 the assembler will allow the user to define and use symbols that
 contain eight characters. However, in some cases it may be
 necessary to limit the uniqueness of the symbols to only six
 characters to conform to the absolute assembler, "ASMB". For
 example, if you define a symbol, "TESTCASE", and use it in the
 operand field as "TESTCA" since the absolute assembler, "ASMB",
 only used six characters, the O option would be necessary for
 assembly.

S Suppress the symbol table output. The assembler normally prints
 out a sorted symbol table at the end of an assembly. This option
 suppresses that output. Note that the L option will not suppress
 the symbol table output, just the source itself.

U Set all undefined symbols as external. In some cases the user may
 wish to assemble a module that has some undefined references in it
 without specifying these as external symbols. The U option will
 treat all undefined references as external references. The U
 option should not substitute for the good programming pratice of
 listing all external symbols in the operand field of the "EXT"
 directive.

W Suppress warning messages. The 6809 assembler is capable of
 reporting a number of warning messages as well as an indicator of
 long jumps and branches that could be shortened. This option
 suppresses the printing of these messages and indicators.

X Produce cross-reference information. The assembler has the
 ability of producing an output file containing information that
 can be used by a cross-reference program to create a
 cross-reference listing. This file will be called the name of the
 source input file with a .REF extension and will appear on the
 same disk as the input source file. If a cross-reference file
 exists, the user will be prompted for the file’s deletion prior to
 assembly.

Y This option overrides the prompt for deleting an existing binary
 file. In other words, if the Y option (stands for YES) is
 specified, an existing binary file of the same name as the one to
 be created will be automatically deleted without a prompt. If
 this option is selected, both the scratch file and cross-reference
 file will be automatically deleted if they previously existed.

FLEX 6809 Relocating Assembler

-9-

P<no This option allows the programmer to specify a page number at
 which to start printing of the assembled listing. Complete
 instructions can be found in the next paragraph.

Specifying a Starting Page Number

As mentioned in the ’P’ option above, it is possible to specify a
particular page number at which printing of the assembled listing should
commence. All output before that page is suppressed INCLUDING ERROR
LINES! When the specified page is hit, printing begins and continues to
the end of the assembly. Note that it is possible to suspend or to
completely terminate an assembly during output by use of the escape or
escape/return sequence found in FLEX. The desired page number is
specified along with the ’P’ option in the option list. It must
directly follow the ’P’ and should be a decimal number from 1 to 65,536.
The page number itself must be directly followed by a non-alphanumeric
character (terminator) such as a comma or space. This implies that the
’P’ option, if specified, MUST BE THE LAST OPTION SPECIFIED. The page
number may also be followed or terminated by a plus sign as used in the
following paragraph. It is also important to note that the PAG mode
must be selected (pagination turned on) in order for the ’P’ option to
have any effect. The PAG mode is turned on by default.

Command Line Parameters

The assembler has a facility for passing information from the command
line directly into the source program. A maximum of three pieces of
information or "command line parameters" may be passed to the program.
These parameter are simply strings of characters that will be
substituted into the source listing as it is read in by the assembler.
These parameters are expressed in the command line in the manner shown
here:

 +++RELASMB,<in file>,<bin file>,+<options>,+<prm.l>,<prm.2,<prm.3>

The parameters are optional but must be separated from the rest of the
line by the second plus sign and from each other by commas. As stated,
these parameters are simply strings of characters. The string of
characters which makes up an individual command line parameter can not
have spaces or commas iinbedded in it. Note that if one wishes to enter
a command line parameter but no options, he must still place both plus
signs in the command as seen in this example command line:

FLEX 6809 Relocating Assembler

-10-

 +++RELASMB,ANYFILE,++PARAMETER1,PARAMETER2

For further information on command line parameters and how to specify
where in the source program these parameters should be substituted, see
the section on Special Features.

Outputting to a Hardcopy Device

The assembler does not have a built in means for outputting the
assembled listing to a hardcopy device. This operation is, however,
available through the facilities of FLEX. To do so one must use the ’P’
command provided with FLEX. This ’P’ command reads a printer driver
file which you can supply to output to any hardcopy device you want. It
effectively switches the output of the assembler from going to the
terminal to going to the printer. For example:

 +++P,RELASMB,TESTFILE

would cause the assembled listing of the source file TESTFILE.TXT to be
output to the printer. For further details of use of the ’P’ command
refer to the FLEX User’s Manual and Advanced Programmer’s Guide.

EXAMPLES:

RELASMB,TEST
 Assembles a file called TEST.TXT on the assigned working drive
 and creates a binary file called TEST.REL on the same drive.
 The assembled listing is output to the terminal as is the
 symbol table.

RELASMB,TEST,+LS
 Same as before except that no listing is output (except for
 any lines with errors) and no symbol table is output.

RELASMB,0.TEST,1.TEST.TST,+FLSY
 Assembles a file from drive 0 called TEST.TXT and produces a
 binary file on drive 1 called TEST.TST. The source file will
 have all lines starting with a semicolon assembled as though
 the semicolon did not exist. No listing or symbol table is
 output and if a file by the name of TEST.TST already resides
 on drive 1, it will be automatically deleted before the
 assembly starts.

FLEX 6809 Relocating Assembler

-11-

1.RELASMB,0.TEST.BAK,+BNGS0
 Loads the assembler itself from drive 1 and assembles a file
 called TEST.BAK found on drive 0. No binary file is produced.
 The assembled listing is output with line numbers turned on
 and multiple line generated code turned off. No symbol table
 is printed; all symbols are unique to only six characters.

RELASMB,0.TEST.BAK,+GS0BNP26
 This command performs just like the last with two exceptions.
 First, the assembler itself is loaded from the whatever the
 assigned system drive is. Second, the assembled listing
 output does not begin until the assembler reaches page number
 26.

0.RELASMB,0.RELASMB,0.RELASMB,+GW,+MINI,’ASSEMBLER FOR 5" DISK’
 This command looks a little confusing, but it was done to
 accentuate the method in which default extensions work. The
 assembler itself (a file called RELASMB.CMD) is loaded from
 drive 0, the file called RELASMB.TXT found on drive 0 is
 assembled, and a binary file is produced on drive 0 by the
 name RELASMB.REL. Note that it was not necessary to specify
 the binary file name in this case since RELASMB.REL is what
 the default would have been. The assembled listing is output
 with multiple line code generation suppressed and warning
 messages suppressed. There are two parameters which may be
 passed into the source listing. The first is the single word
 ’MINI’. The second parameter is the entire string, ’ASSEMBLER
 FOR 5" DISK’, excluding the single quote delimiters
 (everything starting with the A and ending with the K).

FLEX 6809 Relocating Assembler

-12-

III. ASSEMBLER OPERATION & SOURCE LINE COMPONENTS

The FLEX Relocating Assembler is a 2 pass assembler. During pass one a
symbolic reference table is constructed and in pass two the code is
actually assembled, printing a listing and outputting object code if
desired. The source may be supplied in free format as described below.
Each line of source consists of the actual source statement terminated
with a carriage return (0D hex). The source must be comprised of ASCII
characters with their parity or 8th bit cleared to zero. Special
meaning is attached to many of these characters as will be described
later. Control characters (00 to 1F hex) other than the carriage return
($0D) are prohibited from being in the actual source statement part of
the line. Their inclusion in the source statement will produce
undefined results. Each source line is comprised of up to four fields:
Label, Opcode, Operand, and Comment. With two exceptions, every line
must have an opcode while the other fields may or may not be optional.
These two exceptions are:
 1) "Comment Lines" may be inserted anywhere in the source and are
 ignored by the assembler during object code production.
 Comment lines may be either of two types:
 a) Any line beginning with an asterisk (hex 2A) or semicolon
 (hex 3B) in column one.
 b) A null line or a line containing only a carriage return.
 While this line can contain no text, it is still
 considered a comment line as it causes a space in the
 output listing.
 2) Lines which contain a label but no opcode or operand field.

FLEX 6809 Relocating Assembler

-13-

SOURCE STATEMENT FIELDS

The four fields are described here along with their format
specifications. The fields are free format which means there may be any
number of spaces separating each field. In general, no spaces are
allowed within a field.

LABEL OR SYMBOL FIELD:

This field may contain a symbolic label or name which is assigned the
instruction’s address and may be called upon throughout the source
program.

 a) Ordinary Labels
 1) The label must begin in column one and must be unique.
 Labels are optional. If the label is to be omitted, the
 first character of the line must be a space.
 2) A label may consist of letters (A-Z or a-z), numbers
 (0-9), or an underscore (_ or 5F hex). Note that upper
 and lower case letters are not considered equivalent.
 Thus ’ABC’ is a different label from ’Abc’.
 3) Every label must begin with a letter or underscore.
 4) Labels may be of any length, but only the first 8
 characters are significant,
 5) The label field must be terminated by a space or a
 return.

 b) Local Labels

 1) Local labels follow many of the same rules as ordinary
 labels. They must begin in column one and they must be
 terminated by a space or a return.
 2) Local labels are comprised of a number from 0 to 99.
 These numbers may be repeated as often as desired in the
 Same source module; they need not be in numerical order.
 3) Local labels may be treated as ordinary labels; however,
 they cannot be global or external. They may not be used
 in the label field of an ’equ’ or ’set’ directive.
 4) Local labels are referenced by using the local label
 number terminated with an ’F’ for the first forward
 reference found or a ’B’ for the first backward reference
 found. Realize, a backward or forward reference can
 never refer to the same line that it is found on. For
 example,

FLEX 6809 Relocating Assembler

-14-

 2 BEQ 2F "2F" = next occurance of "2"
 2 LEAX 1,X both branches point here!
 2 BRA 2B "2B" = previous occurance of "2"

 5) Local labels should be used primarily (but not
 necessarily exclusively) for branching or jumping around
 some sections of code. In most cases, branching around a
 few lines of code does not warrant the use of an ordinary
 label. When making reference to a nearby location in the
 program there often is no appropriate name with much
 significance; therefore, programmers have tended to use
 symbols like Ll, L2, etc. This can lead to the danger of
 using the same label twice. Local labels have freed the
 programmer from the necessity of thinking of a symbolic
 name of a location. For example,

 BEQ 29F
 LEAX 1,X
 29 STX 0,Y

 Furthermore, local labels only require four bytes to
 store internally; ordinary labels require twelve bytes
 each. The maximum of local labels is dependent upon the
 available memory.

OPCODE FIELD:

This field contains the 6809 opcode (mnemonic) or pseudo-op. It
specifies the operation that is to be performed. The pseudo-ops
recognized by this assembler are described later in this manual.

 1) The opcode is made up of letters (A-Z or a-z) and numbers
 (0-9). In this field, upper and lower case may be used
 interchangeably.
 2) This field must be terminated by a space if there is an
 operand or by a space or return if there is no operand.

OPERAND FIELD:

The operand provides any data or address information which may be
required by the opcode. This field may or may not be required,
depending on the opcode. Operands are generally combinations of
register specifications and mathematical expressions which can include
constants, symbols, ASCII literals, etc. as explained later.

FLEX 6809 Relocating Assembler

-15-

 1) The operand field can contain no spaces.
 2) This field is terminated with-a space or return
 3) Any of several types of data may make up the operand: register
 specifications, numeric constants, symbols, ASCII literals,
 and the special PC designator.

COMMENT FIELD:

The comment field may be used to insert comments on each line of source
Comments are for the programmer’s convenience only and are ignored by
the assembler.

 1) The comment field is always optional.
 2) This field must be preceded by a space.
 3) Comments may contain any characters from SPACE (hex 20) thru
 DELETE (hex 7F).
 4) This field is terminated by a carriage return.

REGISTER SPECIFICATION

Many opcodes require that the operand following them specify one or more
registers. EXG and TFR require two registers specified, push and pull
allow any number, and the indexed addressing mode requires specification
of the register by which indexing is to be done. The following are
possible register names:

 A,B,CC,DP,X,Y,U,S,D,PC

The EXG and TFR instructions require two register specs separated by a
comma. The push and pull instructions allow any number of registers to
be specified, again, separated by commas. Indexed addressing requires
one of X,Y,U, or S as explained under the indexed addressing mode
description.

EXPRESSIONS

Many opcodes require that the operand supply further data or information
in the form of an expression. This expression may be one or more items
combined by any of four operator types: arithmetic, logical relational,
and shift.

FLEX 6809 Relocating Assembler

-16-

Expressions are always evaluated as full 16 bit operations. If the
result of the operation is to be only 8 bits, the assembler truncates
the upper half. If truncation occurs when warnings are enabled, an
appropriate message will be issued.

No spaces may be imbedded in an expression.

ITEM TYPES:

The "item or items" used in an expression may be any of four types as
listed below. These may stand alone or may be intermixed by the use of
the operators.

 1) NUMERICAL CONSTANTS: Numbers may be supplied to the assembler
 in any of the four number bases shown below. The number given
 will be converted to 16 bits truncating any numbers greater
 than that. If 8 bit numbers are required, the 16 bit number
 will then be further truncated to 8 bits with notification of
 such if warning messages are enabled. To specify which number
 base is desired, the programmer must supply a prefix character
 to a number as detailed below.

 BASE PREFIX CHARACTERS ALLOWED

 Decimal none 0 thru 9
 Binary % 0 or 1
 Octal @ 0 thru 7
 Hexadecimal $ 0 thru 9, A thru F

 If no prefix is assigned, the assembler assumes the number to
 be decimal.
 2) ASCII CONSTANTS: The binary equivalent of a single ASCII
 printable character may be supplied to the assembler by
 preceding it with a single quote. The character should be
 between 20 and 7F hex. The binary equivalent of two ASCII
 printable characters (the first in the upper 8 bits and the
 second in the lower 8 bits) may be supplied by preceding the
 two characters with a double quote.
 3) LABELS: Labels which have been assigned some address,
 constant, relocatable or external value may be used in
 expressions. As described above under the label field, a
 label is comprised of letters, digits, and underscores
 beginning with a letter. The label may be of any length, but
 only the first 8 characters are significant. Any label used
 in the operand field must be defined elsewhere in the program.
 Local labels may also be used in the operand field. None of
 the standard 6809 register specifications should be used as a
 label.
 4) PC DESIGNATOR: The asterisk (*) has been set aside as a

FLEX 6809 Relocating Assembler

-17-

 special PC designator (Program Counter). It may be used in an
 expression just as any other value and is equal to the address
 of the current instruction. In a relocatable module, the
 value of the PC designator is relocatable; its value is given
 at loading time.

TYPES OF EXPRESSIONS

There are three types of expressions possible in the FLEX Relocating
Assembler. These include absolute, relocatable and external
expressions.

 a) Absolute Expressions

 An expression is absolute if its value is unaffected by
 program relocation or the module is considered absolute by the
 presence of an ABS and ORG directive. An expression can be
 absolute, even though it contains relocatable symbols, under
 both of the following conditions:

 1) The expression contains an even number of relocatable
 elements
 2) The relocatable elements must cancel each other. That
 is, each relocatable element (or multiple) must be
 canceled by another relocatable element (or multiple).
 In other words, pairs of relocatable elements must have
 signs that oppose each other. The elements that form a
 pair need not be contiguous in the expression.

 For example, rell and re12 are two relocatable symbols in a
 module; the following examples are absolute expressions.

 rel1-rel2
 5*(rel1-rel2)
 -rel1+3*(50/4)+(rel2-4)

 b) Relocatable Expressions
 An expression is relocatable if its value is affected by
 program relocation in a relocatable module. A relocatable
 expression consists of a single relocatable symbol or, under
 all three following conditions, a combination of relocatable
 and absolute elements.

FLEX 6809 Relocating Assembler

-18-

 1) The expression does not contain an even number of
 relocatable elements.
 2) All the relocatable elements but one must be organized in
 pairs that cancel each other. That is, for all but one,
 each relocatable element (or multiple) must be canceled
 by another relocatable element (or multiple). The
 elements that form a pair need not be contiguous in the
 expression.
 3) The uncanceled element can have either positive or
 negative relocation.

 For example, rel1 and rel2 are relocatable symbols from a
 module; the following examples are relocatable:

 -rel2+3*5 negative relocation
 rel1+3
 rel1-(rel2-rel1)
 *+1 PC Designator

 c) External Expressions

 An expression is external if its value depends upon the value
 of a symbol defined outside of the current source module.
 Either an external expression consists of a single external
 symbol or under both of the following conditions, an external
 expression may consist of an external symbol, relocatable
 elements and absolute elements:

 1) The expression contains an even number of relocatable
 elements
 2) The relocatable elements must cancel each other. That
 is, each relocatable element (or multiple) in a module
 must be canceled by another relocatable element. In
 other words, pairs of relocatable elements must have
 signs that oppose each other. The elements that form a
 pair need not be contiguous in the expression.

 For example, ext1 is an external symbol, rel1, rel2 have the
 same meaning as above in the previous examples; the following
 examples are external:

 rel1-rel2+ext1-rel2+rel1
 5+ext1-3
 3/(rel2-rel1)-ext1

FLEX 6809 Relocating Assembler

-19-

EXPRESSION OPERATORS

As mentioned previously, the four classes of operators are: arithmetic,
logical, relational, and shift. These operators permit assembly-time
operations such as addition or division to take place. "Assembly-time"
means that the expression is evaluated during the assembly and the
result becomes a permanent part of your program. Realize that many of
these operators will only apply to absolute symbols and expressions. It
does not make sense to multiply a relocatable or external value at
assembly-time! Only the + and - operators can apply to relocatable and
external symbols and expressions; all of the other operators can be used
with absolute symbols and expressions.

 a) ARITHMETIC OPERATORS
 The arithmetic operators are as follows:

 Operator Meaning

 + Unary or binary addition
 - Unary or binary subtraction
 * Multiplication
 / Division (any remainder is discarded)

 b) LOGICAL OPERATORS
 The logical operators are as follows:

 Operator Meaning

 & Logical AND operator
 | Logical OR operator
 ! Logical NOT operator
 >> Shift right operator
 << Shift left operator

 The logical operations are full 16 bit operations.
 In other words for the AND operation, every bit from
 the first operand or item is individually AND’ed with
 its corresponding bit from the second operand or item.
 The shift operators shift the left term the number of
 places indicated by the right term. Zeroes are
 shifted in and bits shifted out are lost.

 c) RELATIONAL OPERATORS
 The relational operators are as follows:

FLEX 6809 Relocating Assembler

-20-

 Operator Meaning

 = Equal
 < Less than
 > Greater than
 <> Not equal
 <= Less than or equal
 >= Greater than or equal

 The relational operations yield a true-false result.
 If the evaluation of the relation is true, the resulting
 value will be all ones. If false, the resulting value will
 be all zeros. Relational operations are generally
 used in conjunction with conditional assembly as shown
 in that section.

OPERATOR PRECEDENCE

Certain operators take precedence over others in an expression. This
precedence can be overcome by use of parentheses. If there is more than
one operator of the same priority level and no parentheses to indicate
the order in which they should be evaluated, then the operations are
carried out in a left to right order.

The following list classifies the operators in order of precedence
(highest priority first):

 1) Parenthesized expressions
 2) Unary + and -
 3) Shift operators
 4) Multiply and Divide
 5) Binary Addition and Subtraction
 6) Relational Operators
 7) Logical NOT Operator
 8) Logical AND and OR Operators

FLEX 6809 Relocating Assembler

-21-

IV. THE INSTRUCTION SET

This section.is a quick introduction to the 6809 architecture and
insruction set. It is by no means complete. The intention is to
familiarize the user who is already proficient at 6800 assembly language
programming with the basic structure of 6809 assembly language. For
more complete details on the 6809 instruction set you should obtain the
proper documentation from the hardware manufacturer.

Programming Model

The 6809 microprocessor has 9 registers that are accessible by the
programmer. Four of these are 8-bit registers while the other five are
16-bit registers. Two of the 8-bit registers can, in some instances, be
referenced as one 16-bit registers. The registers are as follows:

 The ’A’ accumulator (A) 8 bit
 The ’B’ accumulator (B) 8 bit
 The Condition Code register (CC) 8 bit
 The Direct Page register (DP) 8 bit
 The ’X’ index register (X) 16 bit
 The ’Y’ index register (Y) 16 bit
 The User stack pointer (U) 16 bit
 The System stack pointer (S) 16 bit
 The Program Counter (PC) 16 bit

The A and B accumulators can often be referenced as one 16-bit register
represented by a ’D’ (for Double-accumulator). In these cases, the A
accumulator is the most significant half.

The Addressing Modes

There are several possible addressing modes in the 6809 instruction set.
One of the best features of the 6809 is the consistency or regularity
built into the instruction set. For the most part, any instruction
which addresses memory can use any of the addressing modes available.
It is not necessary to remember which instructions can use which
addressing modes, etc. The addressing modes and a brief description of
each follow.

FLEX 6809 Relocating Assembler

-22-

1) Inherent
 Inherent addressing refers to those instructions which have no
 addressing associated with them.
 Example: ABX add B accumulator to X

2) Accumulator
 Accumulator addressing is done in those instructions which can
 specify the A or B accumulator. In some cases this may be the
 16-bit D accumulator.
 Example: DECA decrement the A accumulator

3) Immediate
 In Immediate addressing the byte or bytes following the opcode are
 the information being addressed. These byte or bytes are specified
 as part of the instruction.
 Example: LDA #8 load immediate value (8) into A

4) Relative - Long and Short
 In Relative addressing, the value of the byte(s) immediately
 following the opcode (1 if short, 2 if long) are added as a two’s
 complement number to the current value of the program counter (PC
 register) to produce a new PC location. Note that only long
 branches are allowed for external expressions. In the source code
 the programmer specifies the desired address to which execution
 should be transferred and the assembler determines the correct
 offset to place after the opcode.
 Example: LBRA THERE the program will branch to THERE

5) Extended
 In Extended addressing, the two bytes (16-bits) following the opcode
 are used as an absolute memory address value.
 Example: LDA $1000 load A from memory location 1000 hex

6) Direct
 In Direct addressing, the single byte (8-bits) following the opcode
 is used as a pointer into a 256-byte window or "page" of memory.
 The page used for this purpose is the one currently found in the
 Direct Page register. Thus, the effective address is a
 concatenation of the Direct Page register as the most significant
 half and the byte following the opcode as the least significant
 half. Realize that direct addressing does not make sense for
 relocatable or external expressions; the normal default will be
 extended.
 Example: LDA $22 load A from memory location $XX22 where XX
 represents the contents of the DP register

FLEX 6809 Relocating Assembler

-23-

7) Extended Indirect
 In Extended Indirect addressing, the 16-bit value following the
 opcode is used to point to two bytes in memory which are used as the
 effective address.
 Example: LDA [$A012] loads A from the address stored at
 locations $A012 and $A013

8) Indexed
 The Indexed addressing mode of the 6809 is an extremely powerful
 method of specifying addresses which is, in general, some sort of
 offset from the value stored in one of the registers X, Y, U, S, or
 PC. There are several forms of indexed addressing which could each
 be considered an addressing mode in itself. We will, however,
 discuss each as a subset of Indexed addressing in general. Note
 that except for the Auto-increment and Auto-decrement modes,
 determining the effective address has no effect on the register
 being used as the index.

8a) Constant-Offset Indexed
 This mode uses a two’s complement offset value found in the byte or
 bytes following the opcode. The offset is added to the contents of
 the specified register to produce a 16-bit effective address. The
 offset may be represented as a number, a symbol, or any valid
 expression. It can be either positive or negative and can be a full
 16-bits.
 Example: LDA 0,X loads A from location pointed to by X
 LDA 5216,Y loads A from (Y) plus 5216
 LDA -36,U loads A from (U) minus 36
 LDA VAL,S loads A from (S) plus VAL

8b) Accumulator Indexed
 In Accumulator indexing, the contents of the specified accumulator
 (A, B, or D) are added to the specified indexing register as a two’s
 complement value. The result is the effective address.
 Example: LDA B,Y loads A from (B)+(Y)
 LDX D,S loads X from (D)+(S)

8c) Auto-Increment
 The contents of the selected register are used as the effective
 address with no offset permitted. After that effective address has
 been determined, the selected register is incremented by one (for
 single plus sign) or two (double plus sign).
 Example: LDA 0,X+ loads A from X then bumps X by 1
 LDD ,Y++ loads D from Y then bumps Y by 2

FLEX 6809 Relocating Assembler

-24-

8d) Auto-Decrement
 In auto-decrementing, the selected register is first decremented by
 one (single minus sign) or two (double minus sign). The resulting
 value, with no offset, is used as the effective address.
 Example: LDA 0,-U decrements U by 1 then loads A from address in U
 LDU ,--S decrements S by 2 then loads U from address in S

Further Addressing Modes

Indexed Indirect Addressing

All the Indexed Addressing modes above can also be used in an indirect
fashion by enclosing the operand in-square brackets. When this is done,
the effective address as described in all the above modes is no longer
the final effective address. Instead, the two bytes pointed to by that
address are used as the effective address.

 Examples: LDA [,X] loads A from the address pointed to by X
 LDX [D,U] loads X from the address pointed
 to by (U)+(D)

If auto-increment or auto-decrement addressing is done in an indirect
fashion, they must be a double increment (two plus signs) or double
decrement (two minus signs).

PC Relative Addressing

Indexing may be done from the PC register just as from the X, Y, U, or
S. The general use of indexing from the PC register is to address some
value in a position-independent manner. Thus if we address some value
at the current PC plus 10, no matter where the program executes the
value will always be addressed. The programmer does not usually know
what that constant offset should be, he knows the address of the value
he wants to access as an absolute value for the program as assembled.
Thus a mechanism has been included in the assembler to automatically
determine the offset from the current PC to that absolute address. This
mechanism is called PC Relative Addressing. The value specified in a PC
Relative address operand is the absolute value. The assembler takes the
difference between this absolute value and the current PC and generates
that offset as part of the assembled code for the instruction. If the
module is relocatable, PC Relative offsets will be calculated at
assembly time. Any PC Relative addressing to externals will always
reserve a 16 bit address. PC Relative Addressing is distinguished from
normal PC Offset Indexing by the use cf ’PCR’ as the register name
instead of ’PC’.

FLEX 6809 Relocating Assembler

-25-

 Example: LEAX STRING,PCR
 this instruction determines the offset
 between the PC and STRING and uses it
 as an offset for the PC register to
 determine the effective address

Forcing Direct or Extended Addressing

The 6809 assembler has a mechanism for forcing the assembler to perform
either direct or extended addressing. Under normal conditions, the
assembler will use direct addressing when possible for absolute modules
and extended addressing for relocatable modules and external
references. To force the assembler to use extended addressing no matter
what the conditions, simply precede the operand with a greater than sign
(’>’). For example, suppose the DP register was set to $00 (this is the
default on reset of the CPU), and that we have a label, BUFPNT, which is
at memory location $0010. Normally the instruction in an absolute
module:

 LDX BUFPNT

would be assembled with direct addressing. If we wished to force
extended addressing we could simply enter:

 LDX >BUFPNT

and the assembler would use extended addressing. Relocatable modules
will use extended addressing as the normal default.

The same capability exists for forcing direct addressing by preceding
the operand with a less than sign (’<’). For example:

 LDX <BUFPNT

would force direct addressing. In some cases, such as PC Relative
addressing, the forcing of direct addressing for relocatable and
external expressions will be ignored. Note that in both cases the
greater than or less than sign must be the first character in the
operand.

FLEX 6809 Relocating Assembler

-26-

The Assembler Instruction Set

This section contains a brief listing of all the mnemonics accepted by
the 6809 assembler. They are listed in four sections, standard 6809
with alternate 6800, 6800 mnemonics not found in 6809, 6801 mnemonics,
and non-standard convenience mnemonics. Before the listing, we must
setup some notational conventions:

 (P) Operand containing immediate, extended, direct, or
 indexed addressing.

 (Q) Operand containing extended, direct, or indexed
 addressing.

 (T) Operand containing indexed addressing only.

 R Any register specification: A, B, X, Y, U, S, PC,
 CC, DP, or D.

 dd 8 bit data value

 dddd 16 bit data value

6809 Mnemonics with 6800 Alternates

ABX Add B into X
 SOURCE FORM: ABX

ADC Add with carry into register
 SOURCE FORM: ADCA (P); ADCB (P)
 6800 ALTERNATES: ADC A (P); ADC B (P)

ADD Add into register
 SOURCE FORM: ADDA (P); ADDB (P); ADDD (P)
 6800 ALTERNATES: ADD A (P); ADD B (P)

AND Logical ’AND’ into register
 SOURCE FORM: ANDA (P); ANDB (P)
 6800 ALTERNATES: AND A (P); AND B (P)

ANDCC Logical ’AND’ immediate into CC
 SOURCE FORM: ANDCC #dd

FLEX 6809 Relocating Assembler

-27-

ASL Arithmetic shift left
 SOURCE FORM: ASLA; ASLB; ASL (Q)
 6800 ALTERNATES: ASL A; ASL B

ASR Arithmetic shift right
 SOURCE FORM: ASRA; ASRB; ASR (Q)
 6800 ALTERNATES: ASR A; ASR B

BCC, LBCC Branch (short or long) if carry clear
 SOURCE FORM: BCC dd; LBCC dddd

BCS, LBCS Branch (short or long) if carry set
 SOURCE FORM: BCS dd; LBCS dddd

BEQ, LBEQ Branch short or long) if equal
 SOURCE FORM: BEQ dd; LBEQ dddd

BGE, LBGE Branch (short or long) if greater than or equal
 SOURCE FORM: BGE dd; LBGE dddd

BGT, LBGT Branch (short or long) if greater than
 SOURCE FORM: BGT dd; LBGT dddd

BHI, LBHI Branch (short or long) if higher
 SOURCE FORM: BHI dd; LBHI dddd

BHS LBHS Branch (short or long) if higher or same
 SOURCE FORM: BHS dd; LBHS dddd

BIT Bit test
 SOURCE FORM: BITA (P); BITB (P)
 6800 ALTERNATES: BIT A (P); BIT B (P)

BLE, LBLE Branch (short or long) if less than or equal to
 SOURCE FORM: BLE dd; LBLE dddd

BLO, LBLO Branch (short or long) if lower
 SOURCE FORM: BLO dd; LBLO dddd

BLS, LBLS Branch (short or long) if lower or same
 SOURCE FORM: BLS dd; LBLS dddd

BLT, LBLT Branch (short or long) if less than
 SOURCE FORM: BLT dd; LBLT dddd

FLEX 6809 Relocating Assembler

-28-

BMI, LBMI Branch (short or long,) if minus
 SOURCE FORM: BMI dd; LBMI dddd

BNE, LBNE Branch (short or long) if not equal
 SOURCE FORM: BNE dd; LBNE dddd

BPL, LBPL Branch (short or long) if plus
 SOURCE FORM: BPL dd; LBPL dddd

BRA, LBRA Branch (short or long) always
 SOURCE FORM: BRA dd; LBRA dddd

BRN, LBRN Branch (short or long) never
 SOURCE FORM: BRN dd; LBRN dddd

BSR, LBSR Branch (short or long) to subroutine
 SOURCE FORM: BSR dd; LBSR dddd

BVC, LBVC Branch (short or long) if overflow clear
 SOURCE FORM: BVC dd; LBVC dddd

BVS, LBVS Branch (short or long) if overflow set
 SOURCE FORM: BVS dd; LBVS dddd

CLR Clear
 SOURCE FORM: CLRA. CLRB; CLR
 6800 ALTERNATES: CLR A; CLR B

CMP Compare
 SOURCE FORM: CMPA (P); CMPB (P); CMPD (P); CMPX (P);
 CMPY (P); CMPU (P); CMPS (P)
 6800 ALTERNATES: CMP A (P); CMP B (P); CPX (P)

COM Complement (One’s complement)
 SOURCE FORM: COMA; COMB; COM (Q)
 6800 ALTERNATES: COM A; COM B

CWAI Clear and wait for interrupt
 SOURCE FORM: CWAI #dd

DAA Decimal adjust accumulator A
 SOURCE FORM: DAA

DEC Decrement
 SOURCE FORM: DECA, DECB, DEC
 6800 ALTERNATES: DEC A; DEC B

FLEX 6809 Relocating Assembler

-29-

EOR Exclusive ’OR’
 SOURCE FORM: EORA (P); EORB (P)
 6800 ALTERNATES: EOR A (P); EOR B (P)

EXG Exchange registers
 SOURCE FORM: EXG Rl,R2

INC Increment
 SOURCE FORM: INCA, INCB, INC (Q)
 6800 ALTERNATES: INC A; INC B

JMP Jump to address
 SOURCE FORM: JMP dddd

JSR Jump to subroutine at address
 SOURCE FORM: JSR dddd

LD Load register from memory
 SOURCE FORM: LDA (P); LDB (P); LDD (P); LDX (P);
 LDY (P); LDU (P); LDS (P)
 6800 ALTERNATES: LDAA (P); LDAB (P); LDA A (P); LDA B (P)

LEA Load effective address
 SOURCE FORM: LEAX (T); LEAY (T); LEAU (T); LEAS (T)

LSL Logical shift left
 SOURCE FORM: LSLA; LSLB ; LSL (Q)

LSR Logical shift right
 SOURCE FORM: LSRA; LSRB; LSR (Q)
 6800 ALTERNATES: LSR A; LSR B

MUL Multiply accumulators
 SOURCE FORM: MUL

NEG Negate (Two’s complement)
 SOURCE FORM: NEGA; NEGB; NEG
 6800 ALTERNATES: NEG A; NEG B

NOP No operation
 SOURCE FORM: NOP

OR Inclusive ’OR’ into register
 SOURCE FORM: ORA (P) ; ORB (P)
 6800 ALTERNATES: ORAA (P); ORAB (P); ORA A (P); ORA B (P)

FLEX 6809 Relocating Assembler

-30-

ORCC Inclusive ’OR’ immediate into CC
 SOURCE FORM: ORCC #dd

PSHS Push registers onto system stack
 SOURCE FORM: PSHS (register list); PSHS #dd
 6800 ALTERNATES: PSHA; PSHB ; PSH A; PSH B

PSHU Push registers onto user stack
 SOURCE FORM: PSHU (register list); PSHU #dd

PULS Pull registers from system stack
 SOURCE FORM: PULS (register list); PULS #dd
 6800 ALTERNATES: PULA; PULB; PUL A; PUL B

PULU Pull registers from user stack
 SOURCE FORM: PULU (register list); PULU #dd

ROL Rotate left
 SOURCE FORM: ROLA; ROLB; ROL (Q)
 6800 ALTERNATES: ROL A; ROL B

ROR Rotate right
 SOURCE FORM: RORA; RORB; ROR (Q)
 6800 ALTERNATES: ROR A; ROR B

RTI Return from interrupt
 SOURCE FORM: RTI

RTS Return from subroutine
 SOURCE FORM: RTS

SBC Subtract with borrow
 SOURCE FORM: SBCA (P); SBCB (P);
 6800 ALTERNATES: SBC A (P); SBC B (P)

SEX Sign extend
 SOURCE FORM: SEX

ST Store register into memory
 SOURCE FORM: STA (P); STB (P); STD (P); STX (P);
 STY (P); STU (P); STS (P)
 6800 ALTERNATES: STAA (P); STAB (P); STA A (P); STA B (P)

SUB Subtract from register
 SOURCE FORM: SUBA (P); SUBB (P); SUBD (P)
 6800 ALTERNATES: SUB A (P); SUB B (P)

FLEX 6809 Relocating Assembler

-31-

SWI Software interrupt
 SOURCE FORM: SWI

SW12 Software interrupt 2
 SOURCE FORM: SWI2

SWI3 Software interrupt 3
 SOURCE FORM: SWI3

SYNC Synchronize to interrupt
 SOURCE FORM.: SYNC

TFR Transfer register to register
 SOURCE FORM: TFR Rl,R2

TST Test
 SOURCE FORM: TSTA; TSTB; TST
 6800 ALTERNATES: TST A; TST B

FLEX 6809 Relocating Assembler

-32-

Simulated 6800 Instructions

ABA Add B to A

CBA Compare B to A

CLC Clear carry bit

CLI Clear interrupt mask

CLV Clear overflow bit

DES Decrement stack pointer

DEX Decrement X

INS Increment stack pointer

INX Increment X

SBA Subtract B from A

SEC Set carry bit

SEI Set interrupt mask

SEV Set overflow bit

TAB Transfer A to B

TAP Transfer A to CC

TBA Transfer B to A

TPA Transfer CC to A

TSX Transfer S to X

TXS Transfer X to S

WAI Wait for interrupt

FLEX 6809 Relocating Assembler

-33-

Simulated 6801 Mnemonics

ASLD Arithmetic shift left D

LSRD Logical shift right D

PSHX Push the X register

PULX Pull the X register

LDAD Load accumulator D from memory

STAD Store accumulator D into memory

Convenience mnemonics

BEC,LBEC Branch (short or long) if error clear

BES,LBES Branch (short or long) if error set

CLF Clear FIRQ interrupt mask

CLZ Clear zero condition code bit

SEF Set FIRQ interrupt mask

SEZ Set zero condition code bit

FLEX 6809 Relocating Assembler

-34-

V. STANDARD DIRECTIVES OR PSEUDO-OPS

Besides the standard machine language mnemonics, the relocating
assembler supports several directives or pseudo-ops. These are
instructions for the assembler to perform certain operations, and are
not directly assembled into code. There are three types of directives
in this assembler, those associated with macros, those associated with
conditional assembly, and those which generally can be used anywhere
which we shall call "standard directives". This section is devoted to
descriptions of these directives which are briefly listed here:

ABS SET RPT
ORG REG LIB
END SETDP GLOBAL
RMB PAG DEFINE and ENDDEF
RZB SPC EXT
FCB TTL NAME
FDB STTL COMMON and ENDCOM
FCC ERR OPT EQU

Descriptions of each directive and its use follow.

ABS

The ABS or Absolute directive signals the relocating assembler to
assemble the following module as an absolute module. This means that
there will be no relocatable expressions. The ABS directive should
appear in the source module before any other code in the source module.
Its syntax is as follows:

ABS

There should be no label or operand. Use the ABS directive when a
module has to be loaded at a particular location; it is not to be
assigned a load address by the linking loader.

ORG

The ORG statement is used to set a new code ’Origin’. This simply means
that a new address is set into the location counter (or program counter)
so that subsequent code will be placed at the new location. The form is
as follows:

FLEX 6809 Relocating Assembler

-35-

 ORG <expression>

No label may be placed on an ORG statement and no code is produced. If
no ORG statement appears in the source, an origin of 0000 is assumed.
The ORG directive should be used only in absolute modules; they are
ignored and flagged as errors in relocatable modules. All expressions
in absolute modules are absolute or external.

END

The END pseudo-op is used to signal the assembler that the end of the
source input module has occurred. This terminates whatever pass is
currently being executed. No label is allowed and no code is generated.
An expression may be given (as shown below) as the transfer address to
be placed in a relocatable binary file. It is optional, and if
supplied when no binary file is being produced, will be ignored.

 END [<expression>]

Note that an end statement is not strictly required, but is the only
means of getting a transfer address appended to a binary output file and
separating modules.

RMB

The RMB or Reserve Memory Bytes directive is used to reserve areas of
memory for data storage. The number of bytes specified by the
expression in the operand are skipped during assembly. No code is
produced in those memory locations and therefore the contents are
undefined at run time. The proper useage is shown here:

 [<label>] RMB <absolute expression>

The label is optional, and the expression is a 16 bit quantity. The RMB
is treated as a RZB in relocatable modules except in common blocks.

RZB

The RZB or Reserve Zero Bytes directive is used to initialize an area of
memory with zeroes. Beginning with the current PC location, the number
of bytes specified will be set to zero. The proper syntax is:

FLEX 6809 Relocating Assembler

-36-

 [<label>] RZB <absolute expression>

where the absolute expression can be any value from 1 to 65,535. This
directive does produce object code.

FCB

The FCB or Form Constant Byte directive is used to set associated memory
bytes to some value as determined by the operand. FCB may be used to
set any number of bytes as shown below:

 [<label>] FCB <expr. 1>,<expr. 2>,...,<expr. n>

Where <expr. x> stands for some absolute, relocatable or external
expression. Each expression given (separated by commas) is evaluated to
8 bits and the resulting quantities are stored in successive memory
locations. The label is optional.

FDB

The FDB or Form Double Byte directive is used to setup 16 bit quantities
in memory. It is exactly like the FCB directive except that 16 bit
quantities are evaluated and stored in memory for each expression given.
The form of the statement is:

 [<label>] FDB <expr. 1>,<expr. 2>,...,<expr. n>

Again, the label field is optional.

FCC

The FCC or Form Constant Character directive allows the programmer to
specify a string of ASCII characters delimited by some non-alphanumeric
character such as a single quote. All the characters in the string will
be converted to their respective ASCII values and stored in memory, one
byte per character. Some valid examples follow:

 LABEL1 FCC ’THIS IS AN FCC STRING’
 LABEL2 FCC .SO IS THIS.
 FCC /LABELS ARE NOT REQUIRED./

There is another method of using FCC which is a deviation from the
standard Motorola definition of this directive. This allows you to
place certain expressions on the same line as the standard FCC delimited
string. The items are separated by commas and are evaluated to 8 bit
results. In some respects this is like the FCB directive. The
difference is that in the FCC directive, expressions must begin with a
letter, number or dollar-sign whereas in the FCB directive any valid
expression will work. For example, %10101111 would be a valid

FLEX 6809 Relocating Assembler

-37-

expression for an FCB but not for an FCC since the percent-sign would
look like a delimiter and the assembler would attempt to produce 8 bytes
of data from the 8 ASCII characters which follow (an FCC string). The
dollar-sign is an exception to allow hex values such as $0D (carriage
return) to be inserted along with strings. Some examples follow:

 INTRO FCC ’THIS STRING HAS CR & LF’,$D,$A
 FCC ’STRING 1’,0,’STRING 2’
 FCC $04,LABEL,/DELIMITED STRING/

Note that more than one delimited string may be placed on a line as in
the second example.

EQU

The EQU or Equate directive is used to equate a symbol to the expression
given in the operand. No code is generated by this statement. Once a
symbol has been equated to some value, it may not be changed at a later
time in the assembly. The form of an equate statement is as follows:

 <label> EQU <nonexternal expression>

The label is strictly required in equate statements. Absolute or
relocatable expressions are allowed; external expressions are illegal.
If the expression is relocatable both the value and relocatable
attribute will be assigned to the label.

SET

The SET directive is used to set a symbol to the value of some
expression, much as an EQU directive. The difference is that a symbol
may be SET several times within the source (to different values) while a
symbol may be Equated only once. If a symbol is SET to several values
within the source, the current value of the symbol will be the value
last SET. The statement form is:

 <label> SET <non external expression>

The label is strictly required and no code is generated.

FLEX 6809 Relocating Assembler

-38-

REG

The REG directive allows the user to setup a list of registers for use
by the push and pull instructions. This list is represented by a value
and the value is equated to the label supplied. In this respect, the
REG directive is similar to the EQU directive. The correct form of the
REG directive is:

 <label> REG <register list>

As an example, suppose a program has a large number of occurances of the
following instructions:

 PSHS A,B,Y,U,DP
 PULS A,B,Y,U,DP

To make things more convenient and less error prone the REG directive
could be used as shown here:

 RLIST2 REG A,B,Y,U,DP

Now all the pushes and pulls referred to above could be accomplished
with the statements:

 PSHS #RLIST2
 PULS #RLIST2

Of course, the register list may still be typed out on push and pull
instructions or an immediate value (with the desired bit pattern) may be
specified.

SETDP

The SETDP or Set Direct Page directive allows the user to set which
memory page the assembler will use for the direct page addressing mode.
The correct format is as follows:

 SETDP [<absolute page value>]

As an example, if "SETDP $D0" is encountered, the assembler will then
use direct addressing for any address in the range of $D000 to $D0FF.
It is important to note that this directive does not actually affect the
contents of the direct page register. The value set is what will be
used at assembly time to determine direct addressing, but it is up to
the user to be sure the DP register corresponds at run time. If there
is no <page value> supplied, direct addressing will be disabled and all
addresses will be full 16 bit values. Any number of SETDP instructions
may occur in a program. The default value is page 0 (for 6800
compatibility). Direct addressing has more meaning for an absolute
module.

FLEX 6809 Relocating Assembler

-39-

PAG

The PAG directive causes a page eject in the output listing and prints a
header at the top of the new page. Note that the ’PAG’ option must have
been previously selected in order for this directive to take effect. It
is possible to assign a new number to the new page by specifying such in
the operand field. If no page number is specified, the next consecutive
number will be used. No label is allowed and no code is produced. The
PAG operator itself will not appear in the listing unless some sort of
error is encountered. The proper form is:

 PAG [<absolute expression>]

Where the absolute expression is optional. The first page of a listing
does not have the header printed on it and is considered to be page 0.
The intention here is that all options, title, and subtitle may be setup
and followed by a PAG directive to start the assembled listing at the
top of page 1 without the option, title, or subtitle instructions being
in the way.

SPC

The SPC or Space directive causes the specified number of spaces (line
feeds) to be inserted into the output listing. The general form is:

 SPC [<space count>[,<keep count>]]

The space count can be any number from 0 to 255. If the page option is
selected, SPC will not cause spacing past the top of a new page. The
<keep count> is optional and is the number of lines which the user
wishes to keep together on a page. If there are not enough lines left
on the current page, a page eject is performed. If there are <keep
count> lines left on the page (after printing <space count> spaces),
output will continue on the current page. If the page option is not
selected, the <keep count> will be ignored. If no operand is given
(ie. just the directive SPC), the assembler will default to one blank
line in the output listing. Both the space count and keep count must be
absolute expressions.

TTL

The TTL directive allows the user to specify a title for the program
being assembled. This title is then printed in the header at the top of
each output listing page if the page option is selected. If the page
option is not selected, this directive is ignored. The proper form is:

 TTL <text for the title>

All the text following the TTL directive (excluding leading spaces) is
placed in the title buffer. Up to 32 characters are allowed with any

FLEX 6809 Relocating Assembler

-40-

excess being ignored. It is possible to have any number of TTL
directives in a source program. The latest one encountered will always
be the one used for printing at the top of the following page(s).

STTL

The STTL or Subtitle directive is used to specify a subtitle to be
printed just below the header at the top of an output listing page. It
is specified much as the TTL directive:

 STTL <text for the subtitle>

The subtitle may be up to 52 characters in length. If the page option
is not selected, this directive will be ignored. As with the TTL
option, any number of STTL directives may appear in a source program.
The subtitle can be disabled or turned off by an STTL command with no
text following.

ERR

The ERR directive may be used to insert user-defined error messages in
the output listing. The error count is also bumped by one. The proper
form is:

 ERR <message to be printed>

All text past the ERR directive (excluding leading spaces) is printed as
an error message (it will be preceded by three asterisks) in the output
listing. Note that the ERR directive line itself is not printed. A
common use for the ERR directive is in conjunction with conditional
assembly such that some user-defined illegal condition may be reported
as an error.

RPT

The RPT or Repeat directive causes the succeeding line of source to be
repeated some specified number of times. The syntax is as follows:

 RPT <absolute count>

where <count> may be any number from 1 to 127. For example, the
following two lines:

FLEX 6809 Relocating Assembler

-41-

 RPT 4
 ASLB

would produce an assembled output of:

 ASLB
 ASLB
 ASLB
 ASLB

Some directives, such as IF or MACRO, may not be repeated with the RPT
command. These cases are where it is illogical or impractical to do so.
If attempted, the RPT will simply be ignored.

LIB

The LIB or library directive allows the user to specify an external file
for inclusion in the assembled source output. Under normal conditions,
the assembler reads all input from the file specified on the calling
line. The LIB directive allows the user to temporarily obtain the
source lines from some other file. When all the lines in that external
file have been read and assembled, the assembler resumes reading of the
original source file. The proper syntax is:

 LIB <file spec>

where <file spec> is a standard FLEX file specification. The default
drive is the assigned working drive and the default extension is .TXT.
Any END statements found in the file called by the LIB directive are
ignored. The LIB directive line itself does not appear in the output
listing. Any number of LIB instructions may appear in a source listing.
It is also possible to nest LIB files up to 12 levels. Nesting refers
to the process of placing a LIB directive within the source that is
called up by another LIB directive. In other words, one LIB file may
call another. If nested, LIB files must come from the same drive.

GLOBAL

The GLOBAL directive is used in relocatable modules to inform the
assembler that the symbols declared global should be passed on to the
linking-loader. The syntax of the GLOBAL directive is:

 GLOBAL <label1>[,<label2>, . . .]

FLEX 6809 Relocating Assembler

-42-

Where label1, label2, etc. represent the symbolic names of the labels
to be declared as global; each label should be separated by a comma.
Realize, the GLOBAL directives must occur before the use or definition
of the symbol. Normally, declare global symbols at the beginning of the
source module. Macros and local labels cannot be declared global.

DEFINE and ENDDEF

These are convenience directives that work much the way GLOBAL works.
The DEFINE directive informs the assembler that all labels declared in
the label field will also be declared as global symbols. This "define"
mode will be in effect until an ENDDEF directive is encountered. For
example,

 DEFINE
 TEMP1 FDB 0,$FFFF
 START LDX 1
 ENDDEF

This example simply defines the two labels TEMP1 and START as global.
This directive works well when many symbols must be declared as global
while they are initialized to various values.

EXT

The EXT directive declares symbols to be external to this particular
module. Macros and local labels cannot be declared external. The
syntax of the EXT directive is:

 EXT <label1>[,<label2>, . . .]

Where label1, label2, etc. is an ordinary label as in GLOBAL; each label,
should be separated by a comma. When the assembler comes across a label
declared external in the operand field, external records will be written
out to the binary output module. As with the GLOBAL directive, the EXT
directive should appear before the actual use of the external symbol;
usually at the beginning of the source module. These external records
will be used by the linking-loader.

FLEX 6809 Relocating Assembler

-43-

NAME

Each binary output module can be given a module name with the NAME
directive. The module name is used by the linking-loader in reporting
errors and address information. it is strongly recommended to give each
module a name. The syntax of the NAME directive is:

 NAME <name of the module>

The name of the module can be a maximum of 8 characters. If more than
one NAME directive occurs in the source module, the last name given will
be the name given to the module.

COMMON and ENDCOM

It is possible to establish common blocks in the relocating assembler.
These can only be named and uninitialized common blocks.

 <name> COMMON

A common block declaration is terminated by the use of the ENDCOM
directive. The only directive allowed between the COMMON and ENDCOM is
RMB. The RMB directives define the size of the common block; labels may
be associated with each RMB within the common block. For example,

 TEST COMMON
 TEMP1 RMB 10
 TEMP2 RMB 5
 ENDCOM

This common block named TEST has two variables, TEMPl and TEMP2,
associated with it and is of length 15 bytes. A common block and its
variables are considered external by the assembler. Only one common
block of a particular name should appear in a module; however, up to 127
common blocks of different names may occur in a module. As common
blocks are treated as externals, the linking-loader handles the
resolution of references to the common blocks automatically. For
example,

 TEST COMMON
 TEMP1 RMB 10
 TEMP2 RMB 5
 ENDCOM
 START LDD TEMP1
 . . .

FLEX 6809 Relocating Assembler

-44-

Common blocks are very useful for passing parameters and keeping common
information around. Furthermore, the common block will have the name of
the common block as its module name; this is done automatically by the
assembler. Common blocks must be accompanied by executable code in the
same module; that is, a common block cannot be the only item in a single
source module.

OPT

The OPT or Option directive allows the user to choose from several
different assembly options which are available to him. These options
are generally related to the format of the output listing and object
code. The options which may be set with this command are listed below.
The proper form of this instruction is:

 OPT <option 1>,<option 2>,...,<option n>

Note that any number of options may be given on one line if separated by
commas. No label is allowed and no spaces may be imbedded in the option
list. The options are set during pass two only. If contradicting
options are specified, the last one appearing takes precedence. If a
particular option is not specified, the default case for that option
takes effect. The default cases are signified below by an asterisk.

The allowable options are:

 PAG* enable page formatting and numbering
 NOP disable pagination

 CON print conditionally skipped code
 NOC* suppress conditional code printing

 MAC* print macro calling lines
 NOM suppress printing of macro Calls

 EXP print macro expansion lines
 NOE* suppress macro expansion printing

 LIS* print an assembled listing
 NOL suppress output of assembled listing

 * denotes default option and is not part of option name

FLEX 6809 Relocating Assembler

-45-

The last option may be used to turn parts of a program listing on or off
as desired. If the ’+L’ command line option is specified, however, the
’LIS’ and ’NOL’ options are overridden and no listing occurs.

FLEX 6809 Relocating Assembler

-46-

VI. CONDITIONAL ASSEMBLY

This assembler supports "conditional assembly" or the ability to
assemble only certain portions of your source program depending on the
conditions at assembly time. Conditional assembly is particularly
useful in situations where you might need several versions of a program
with only slight changes between versions.

As an example, suppose we required a different version of some program
for 4 different systems whose output routines varied. Rather than
prepare four different source listings, we could prepare one which would
assemble a different set of output routines depending on some variable
which was set with an EQU directive near the beginning of the source.
Then it would only be necessary to change that one EQU statement to
produce any of the four final programs. This would make the software
easier to maintain, as besides only needing to keep track of one copy of
the source, if a change is required in the body of the program, only one
edit is required to update all versions.

The IF-ENDIF Clause

In its simplest form, conditional assembly is performed with two
directives: IF and ENDIF. The two directives are placed in the source
listing in the above order with any number of lines of source between.
When the assembler comes across the IF statement, it evaluates the
expression associated with it (we will discuss this expression in a
moment) and if the result is true, assembles all the lines between the
IF and ENDIF and then continues assembling the lines after the ENDIF.
If the result of the expression is false, the assembler will skip all
lines between the IF and ENDIF and resume assembly of the lines after
the ENDIF. The proper syntax of these directives is as follows:

 IF <absolute expression>
 .
 . conditional code goes here
 .
 ENDIF

The ENDIF requires no additional information but the IF requires an
absolute expression. This expression is considered FALSE if the 16-bit
result is equal to zero. If not equal to zero, the expression is
considered TRUE.

FLEX 6809 Relocating Assembler

-47-

A more powerful conditional assembly construct is possible with the ELSE
directive. The ELSE directive may be placed between the IF and ENDIF
statements. Its effect is to switch the sense of the test for the lines
between it and the ENDIF. In effect, the lines of source between the IF
and ENDIF are split into two groups by the ELSE statement. Those lines
before the ELSE are assembled if the expression is true while those
after (up to the ENDIF) are ignored. If the expression is false, the
lines before the ELSE are ignored while those after it are assembled.
The IF-ELSE-ENDIF construct appears as follows:

 IF <absolute expression>
 .
 . this code assembled if expression is true
 .
 ELSE
 .
 . this code assembled if expression is false
 .
 ENDIF

The ELSE statement does not require an operand and there may be only one
ELSE between an IF-ENDIF pair.

It is possible to nest IF-ENDIF clauses (including ELSE’s). That is to
say, an IF-ENDIF clause may be part of the lines of source found inside
another IF-ENDIF clause. You must be careful, however, to terminate the
inner clause before the outer.

There is another form of the conditional directive, namely IFN which
stands for "if not". This directive functions just like IF except that
the sense of the test is reversed. Thus the code immediately following
is assembled if the result of the expression is NOT TRUE. An
IFN-ELSE-ENDIF clause appears as follows:

 IFN <absolute expression>
 .
 . this code assembled if expression is FALSE
 .
 ELSE
 .
 . this code assembled if expression is TRUE
 .
 ENDIF

FLEX 6809 Relocating Assembler

-48-

The IFC-ENDIF Clause

Another form of conditional assembly is very similar to the IF-ENDIF
clause defined above, but depends on a comparison of two strings for its
conditionality instead of a true-false expression. This type of
conditional assembly is done with the IFC and IFNC directives (for "if
compare" and "if not compare") as well as the ELSE and ENDIF discussed
above. Thus for the IFC directive we have a clause like:

 IFC <string 1>,<string 2>
 .
 . this code assembled if strings are equal
 .
 ELSE
 .
 . this code assembled-if strings are not equal
 .
 ENDIF

As can be seen, the two strings are separated by a comma. There are two
types of strings, one enclosed by delimiters the other not. The
delimited type may use either a single quote (’) or double quote (") as
the delimiter. This type of string is made up of all the characters
after the first delimiter until the second delimiter is found. The
second type of string is simply a group of characters, starting with a
non-space and containing no spaces or commas. Thus if you need spaces
or commas in a string, you must use the delimited type of string. It is
possible to specify a null string by placing tvio delimiters in a row or
by simply leaving the string out completely. Note that there may be no
spaces after string 1 and before the separating comma nor after the
comma and before string 2. As with IFN, the IFNC directive simply
reverses the sense of the test such that code immediately following an
IFNC directive would be assembled if the strings did NOT compare.

A common application of this type of conditional assembly is in macros
(defined in the next section) where one or both of the strings might be
a parameter passed into the macro.

The IF-SKIP Clause

The IF-SKIP type of conditional assembly is a method which does not use
(in fact does not allow) a related ENDIF or ELSE. Instead, the
assembler is caused to skip a specified number of lines of source
depending on the result of the expression or string comparison.

FLEX 6809 Relocating Assembler

-49-

IMPORTANT NOTE:
This type of conditional assembly is

ONLY allowed within the body of a macro
Any use of it outside a macro will

result in an error. Macros are defined
in the next section.

As before, the possible directives are: IF, IFN, IFC, and IFNC. This
type of conditional assembly is performed with a single instruction.
Instead of code being assembled on a true result, the specified number
of lines are SKIPPED. This number of lines can be in a forward or
reverse direction. The syntax is as shown:

 IF <absolute expression>,<skip count>
 or
 IFC <string 1>,<string 2>,<skip count>

The skip count must be a decimal number between 1 and 255. It may be
preceded by a plus or minus sign. A positive number produces a forward
skip while a negative number produces a backwards skip. A skip count of
zero has no effect (the instruction following the IF directive will be
executed next). A skip count of one will cause the second line after
the IF statement to be the next one executed (the one line directly
following the IF statement is ignored). A skip count of negative one
will cause the line just before the skip count to be the next one
executed. The assembler will not skip past the end or beginning of the
macro which contains the IF-SKIP statement. If a skip count is
specified which is beyond these limits, the assembler will be left
pointing to the last statement in the macro or the first, depending on
whether the skip count was positive or negative. There can be no spaces
before or after the comma which separates the skip count from the
expression or from string 2.

IMPORTANT NOTE

In order for conditionals to function properly, they must be capable of
evaluation in pass one so that the same result will occur in pass two.
Thus if labels are used in a conditional expression, they must have been
defined in the source before the conditional directive is encountered.

FLEX 6809 Relocating Assembler

-50-

VII. MACROS

A macro is a facility for substituting a whole set of instructions and
parameters in place of a single instruction or call to the macro. There
are always two steps to the use of macros, the definition and the call.
In the definition we specify what set of instructions make up the body
of the macro and assign a name to it. This macro may then be called by
name with a single assembler instruction line. This single line is
replaced by the body of the macro or the group of lines which were
defined as the macro. This replacement of the calling line with the
macro body is called the macro "expansion". It is also possible to
provide a set of parameters with the call which will be substituted into
the desired areas of the macro body.

A simple example will assist in the understanding of macros. Let us
define a macro which will shift the ’D’ register left four places. This
is such a simple operation that it does not really require or make
effective use of macros, but it will suffice for learning purposes. In,
actuality this routine would probably be written in-line or, if required
often, written as a subroutine.

The first step is to define the macro. This must be done BEFORE THE
FIRST CALL to the macro. It is good practice to define all macros early
in a program. The definition is initiated with a MACRO directive and
terminated by an ENDM directive. The definition of our example would be
as follows:

 ASLD4 MACRO
 ASLB
 ROLA
 ASLB
 ROLA
 ASLB
 ROLA
 ASLB
 ROLA
 ENDM

The first line is the MACRO directive. Note that the name of the macro
is specified with this directive by placing it in the label field. This
macro name should follow all the rules for labels. It will NOT be
placed in the symbol table, but rather in a macro name table. Macros
cannot be global or external! The body of the macro follows and is
simply lines of standard assembly source which shift the ’D’ register
left four places. The definition is terminated by the ENDM directive.

FLEX 6809 Relocating Assembler

-51-

When this macro definition is encountered during pass 1, the assembler
will not actually assemble the source, but instead copy it into a buffer
for future access when the macro is called. During pass 2 this
definition is ignored.

At this point we may continue with our assembly program and when we
desire to have the ’D’ register shifted left four places, simply call
the macro as follows:

 .
 .
 LDA VALUE
 LDB VALUE+1
 ASLD4 here is the macro call
 STD RESULT
 .
 .

You can see that calling a macro consists of simply placing its name in
the mnemonic field of a source line. When the assembler sees the above
call, it realizes that the instruction is not a standard 6809 mnemonic,
but rather a macro that has been previously defined. The assembler will
then replace the asld4 with the lines which make up the body of that
macro or "expand" the macro. The result would be the following
assembled code:

 .
 .
 LDA VALUE
 LDB VALUE+1
 ASLB the body of the macro
 ROLA replaces the call
 ASLB
 ROLA
 ASLB
 ROLA
 ASLB
 ROLA
 STD RESULT
 .
 .

You should note that a macro call differs from a Subroutine call in that
the macro call results in lines of code being placed in-line in the
program where a subroutine call results in the execution of the routine
at run-time. Five calls to a subroutine still only requires one copy of
the subroutine while five calls to a macro results in five copies of the
macro body being inserted into the program.

FLEX 6809 Relocating Assembler

-52-

Parameter Substitution

If macros were limited to what was described above, they would probably
not be worth the space it took to implement them in the assembler. The
real power of macros comes in "parameter substitution.". By that we mean
the ability to pass parameters into the macro body from the calling
line. In this manner, each expansion of a macro can be different.
As an example, suppose we wanted to add three 16-bit numbers found in
memory and store the result in another memory location. A simple macro
to do this (we shall call it ADD3) would look like this:

 ADD3 MACRO
 LDD LOC1 get first value in ’D’
 ADDD LOC2 add in second value
 ADDD LOC3 add in third value
 STD RESULT store result
 ENDM

Now let’s assume we need to add three numbers like this in several
places in the program, but the locations from which the numbers come and
are to be stored are different. We need a method of passing these
locations into the macro each time it is called and expanded. That is
the function of parameter substitution. The assembler lets you place up
to nine parameters on the calling line which can be substituted into the
expanded macro. The proper form for this is:

 MACNAM <prm.1>,<prm.2>,<prm.3>,...,<prm.9>

where "MACNAM" is the name of the macro being called. Each parameter
may be one of two types: a string of characters enclosed by like
delimiters and a string of characters not enclosed by delimiters which
contains no embedded spaces or commas. The delimiter for the first type
may be either a single quote (’) or a double quote (") but the starting
and ending deliniiter of a particular string must be the same. A comma
is used to separate the parameters. These parameters are now passed
into the macro expansion by substituting them for 2-character "dummy
parameters" which have been placed in the macro body on definition.
These 2-character dummy parameters are made up of an ampersand (&)
followed by a single digit representing the number of the parameter on
the calling line as seen above. Thus any occurence of the dummy
parameter, "&1", would be replaced by the first parameter found on the
calling line.

Let’s re-do our ADD3 macro to demonstrate this process. The definition
of ADD3 now looks like this:

FLEX 6809 Relocating Assembler

-53-

 ADD3 MACRO
 LDD &l get first value in ’D’
 ADDD &2 add in second value
 ADDD &3 add in third value
 STD &4 store result
 ENDM

Now to call the macro we might use a line like:

 ADD3 LOC1,LOC2,LOC3,RESULT

When this macro was expanded, the &l would be replaced with LOC1, the &2
would be replaced with LOC2, etc. The resulting assembled code would
appear as follows:

 LDD LOC1 get first value in ’D’
 ADDD LOC2 add in second value
 ADDD LOC3 add in third value
 STD RESULT store result

Another call to the macro might be:

 ADD3 ACE,TWO,LOC3,LOC1

which would result in the following expansion:

 LDD ACE get first value in ’D’
 ADDD TWO add in second value
 ADDD LOC3 add in third value
 STD LOC1 store result

Now you should begin to see the power of macros.

There is actually a tenth parameter which may be passed into a macro
represented by the dummy parameter "&0". It is presented on the calling
line as so:

 <prm.0> MACNAM <prm.l>,<prm.2>,<prm.3>,...,<prm.9>

This parameter is somewhat different from the others in that it must be
a string of characters that conform to the rules for any other assembly
language label since it is found in the label field. It is in fact a
standard label which goes into the symbol table and can be used in other
statement’s operands like any other label.

FLEX 6809 Relocating Assembler

-54-

Ignoring a Dummy Parameter

There may be times when a programmer wishes to have an ampersand
followed by a number in a macro which is not a dummy parameter and
should therefore not be replaced with a parameter string. An example
would be an expression where the value of MASK was to be logically
’anded’ with the number 4. The expression would appear like:

 MASK&4

If this expression were in a macro, upon expansion the &4 would be
replaced with the fourth parameter on the calling line. It is possible
to prevent this, however, by preceding the ampersand with a backslash
(\) like this:

 MASK\&4

When the assembler expands the macro containing this expression, it will
recognize the backslash, remove it, and leave the ampersand and
following number intact.

Another case where this can be useful is when a macro is defined within
a macro (that is possible!) and you wish to place dummy parameters in
the inner macro.

The EXITM Directive

Sometimes it is desireable to exit a macro prematurely. The EXITM
directive permits just that. During expansion of a macro, when an EXITM
command is encountered the assembler immediately skips to the ENDM
statement and terminates the expansion. This probably does not seem
logical, and is not except when used with conditional assembly.
To portray the use of EXITM, assume we have some macro called XYZ which
has two parts. The first part should always be expanded, but the second
should only be expanded in certain cases. We could use EXITM and the
IFNC directives to accomplish this as follows:

 XYZ MACRO
 .
 . code that should always be generated
 .
 IFNC &2,YES
 EXITM
 ENDIF
 .
 . code that is only sometimes generated
 .
 ENDM

FLEX 6809 Relocating Assembler

-55-

The following calls would result in the second part being expanded or
producing code:

 XYZ "PARAMETER 1",YES
 XYZ "PARAMETER 1","YES"
 XYZ O,YES

while all of the following would result in the second part not being
expanded:

 XYZ "PARAMETER 1",NO
 XYZ JUNK,NO
 XYZ JUNK
 XYZ PRM1,PRM2

The EXITM directive itself requires no operand.

The DUP and ENDD Directives

There is another type of assembler construct which may only be used
inside of a macro, called the DUP-ENDD clause. The assembler will
duplicate the lines placed between the DUP and ENDD (end dup)
instructions some specified number of times. The proper form is:

 DUP <dup count>
 .
 . code to be duplicated
 .
 ENDD

where the <dup count> is the number of times the code should be
duplicated. The <dup count> may be any valid expression, but most be in
the range of 1 to 255 decimal. Note that DUP-ENDD clauses may NOT be
nested. That is to say, one DUP-ENDD clause may not be placed inside
another.

As an example, let’s take our first example in this section on macros
and spruce it up a little. Assume we want a macro that will shift the
’D’ register to the left ’x’ places where ’x’ can vary in different
calls to the macro. The DUP-ENDD construct will work nicely for this
purpose as seen here:

 ASLDX MACRO
 DUP &l
 ASLB
 ROLA
 ENDD
 ENDM

FLEX 6809 Relocating Assembler

-56-

Now to shift the ’D’ register left four places we call the macro with:

 ASLDX 4

To shift it left 12 places we simply use the instruction:

 ASLDX 12

And so on.

More on MACROS

A few more hints on using macros may be of value.

One important thing to remember is that parameter substitution is merely
replacing one string (the dummy parameter or &x) with another (the
parameter string on the calling line). You are not passing a value into
a macro when you have a parameter of "1000", but rather a string of four
characters. When the expanded source code of the macro is assembled,
the string may be considered a value, but in the phase of parameter
substitution it is merely a string of characters. An example macro will
help clarify this point.

 TEST MACRO
 LDA #$&1 comment field is here
 LDB L&l
 NOP parameters can even be
 NOP substituted into
 NOP comments &2
 &3 or they can be a mnemonic
 &4 TST M&1M or label or inside a string
 ENDM

Now if this macro were called with the following command:

 TEST 1000,’like this’,SEX,"LABEL"

The expanded source code would look like this:

 LDA #$1000 comment field is here
 LDB L1000
 NOP parameters can even be
 NOP substituted into
 NOP comments like this
 SEX or they can be a mnemonic
 LABEL TST M1000M or label or inside a string

FLEX 6809 Relocating Assembler

-57-

Note that in the LDA instruction the parameter "1000" is used as a
number but in the LDB and TST instructions it is part of a label. The
second parameter is not even substituted into the actual program, but
rather into the comment field. The use of parameter,number one in the
TST instructions shows that the dummy parameter does not have to be a
stand alone item but can be anywhere in the line.

Another convenient method of using macros is in conjunction with the
IF-SKIP type of conditional directive. With a negative or backward skip
we can cause a macro to loop back on itself during expansion. A good
example of this would be a case where the programmer must initialize one
hundred consecutive memory locations to the numbers one through one
hundred. This would be a very tedious task if all.these numbers had to
be setup by FCB directives. Instead we can use a single FCB directive,
the IF-SKIP type of directive, and the SET directive to accomplish this
task.

 INIT MACRO
 COUNT SET 0 initialize counter
 COUNT SET COUNT+1 bump by one
 FCB COUNT set the memory byte
 IF COUNTd,-2
 ENDM

If you try this macro out, you will see that it expands into quite a bit
of source if the macro expansions are being listed because the 3rd, 4th
and 5th line are expanded for each of the one hundred times through.
However, only one hundred bytes of object code are actually produced
since lines 3 and 5 don’t produce code.

If a label is specified on a line in the macro, you will receive a
multiply defined symbol error if the macro is called more than once.
There is a way to get around this shortcoming that is somewhat crude,
but effective. That is to use a dummy parameter as a label and require
the programmer to supply a different label name as that parameter each
time the macro is called. For example, consider the following example:

 SHIFT MACRO
 PSHS D
 LDA &l
 LDB #&2
 &3 ROLA
 DECB
 BNE &3
 STA &l
 PULS D
 ENDM

FLEX 6809 Relocating Assembler

-58-

Now if this macro was called with the line:

 SHIFT FLAG,3,CALL1

The resulting macro expansion would look like:

 PSHS D
 LDA FLAG
 LDB #3
 CALL1 ROLA
 DECB
 BNE CALL1
 STA FLAG
 PULS D

There is no problem here, but if the macro were called again with the
same string for parameter 3 (CALL1), a multiply defined symbol error
would result. Thus any subsequent calls to SHIFT must have a unique
string for parameter 3 such as CALL2, CALL3, etc. Of course, the
easiest way to do this is by using local labels within the macro.

Important Notes on MACROS

1) A macro must be defined before the first call to it.

2) Macros can be nested both in calls and in definitions. That is, one
 macro may call another and one macro may be defined inside another.

3) Comment lines are stripped out of macros when defined to save storage
 space in the macro text buffer.

4) Local labels are supported.

5) A macro cannot call a library file. That is, a LIB directive cannot
 appear within a macro.

6) No counting of parameters is done to be sure enough parameters are
 supplied on the calling line to satisfy all dummy parameters in the
 defined macro. If the body of a macro contains a dummy parameter for
 which no parameter is supplied on the calling line, the dummy
 parameter will be replaced with a null string or effectively removed.

7) The macro name table is searched before the mnemonic table. This
 means that a standard mnemonic or directive can be effectively
 redefined by replacing it with a macro of the same name.

8) Once a macro has been defined, it cannot be purged nor redefined.

FLEX 6809 Relocating Assembler

-59-

VIII. SPECIAL FEATURES

This section covers a few special features of the 6809 Relocating
Assembler that don’t seem to fit under any other specific category.

End of Assembly Information

Upon termination of an assembly, and before the symbol table is output,
four items of information may be printed: the total number of errors
encountered, the total number of warnings encountered, the total number
of excessive branches or jumps encountered, and the address of the last
byte of code assembled.

The number of errors is always printed in the following manner:

 0 Error(s) Detected

The number of warnings are printed only if warnings have not been
suppressed and if the number is greater than zero (ie. only if there was
a warning):

 0 Error(s) Detected 2 Warning(s) Reported

Excessive branches or jumps are printed after the error count and after
the warning count. If no warnings were reported, the excessive
branch/jump count will be displayed after the error count.

 0 Error(s) Detected 3 Excessive BRANCH/JUMP(S) Detected

The last assembled address is printed only if the assembled output
listing is turned off. It is actually the last address which the
assembler’s program counter register was pointing to, so there may not
really be an assembled byte of code at this address. For example if the
last instruction in a program except for the END was an RMB directive,
the address would be the last byte reserved by that command. This
information is presented as follows:

 Last Assembled Address: 1055

The address is printed as a 4-digit hexadecimal value.

FLEX 6809 Relocating Assembler

-60-

Absolute Address Printer

Specifying the A option on the assembler calling line causes an absolute
address to be printed in the object code field of the assembled output
listing for all relative branch instructions. This is very convenient
for debugging purposes, especially when long branches are used.

Excessive Branch or Jump Indicator

A mechanism has been included in the assembler to inform the programmer
when a long branch or jump could be replaced by a short branch. The
purpose is to allow size and speed optimization of the final code. This
indicator is a greater-than si’gn placed just before the address of the
long branch or jump instruction which could be shortened. The following
section of code shows just how it looks:

 3420 B6 E004 INCH LDA $E004
 3423 84 01 ANDA #$01
 >3425 1027 FFF7 LBEQ INCH
 3429 B6 E005 LDA $E005
 342C 81 20 CMPA #$20
 342E 24 06 BHS OUTCH
 >3430 BD 3436 JSR OUTCH
 >3433 7E 3420 JMP INCH
 3436 34 04 OUTCH PSHS B
 .
 .
 .

These indicator flags may be suppressed by turning off warnings.

Auto Fielding

The assembler automatically places the four fields of a source line
(label, mnemonic, operand, and comment) in columns in the output
assembled listing. This allows the programmer to edit a condensed
source file without impairing the readability of the assembled listing.
The common method of doing this is to separate the fields by only one
space when editing. The assembled output places all mnemonics beginning
in column 10, all opcodes beginning in column 17, and all comments
beginning in column 27 assuming the previous field does not extend into
the current one. There are a few cases where this automatic fielding
can break down such as lines with errors, but these cases are rare and
generally cause no problem.

FLEX 6809 Relocating Assembler

-61-

Fix Mode

The relocating assembler has the capability to accept comment lines that
begin with either an asterisk (*) or a semicolon (;). If a semicolon is
used, the F option of the assembler will assume that the "comment" is a
valid instruction to be assembled. Therefore, the assembler will act as
though the semicolon did not exist at all; the rest of the information
on that line will be assembled. For example,

 ;LABEL1 LDX 2
 ; LDD TEST,U

With the F option invoked, these two lines will be normally assembled.
This aides in the debugging process.

Local Labels

Local labels are available in the assembler. These local labels allow
the programmer to reuse labels over; in this way meaningless labels can
be substituted with local labels. See section three, ASSEMBLER
OPERATION & SOURCE LINE COMPONENTS, under the description of the label
field for more information on local labels.

FLEX 6809 Relocating Assembler

-62-

Auto Table Setup

The assembler automatically sets up all necessary tables and buffers
depending on the amount of memory contained in your system. The amount
of memory contained is determined by reading the memory end value
(MEMEND) in FLEX. The tables or buffers which can vary in size are as
follows:

SYMBOL TABLE
 This table is where all symbols are maintained during
 assembly. Each entry into the symbol table requires 12 bytes,
 8 for the name, two for the address or value associated with
 it and two for flags and common block information. This
 assembler uses a hashed symbol table technique which can mean
 that symbols are pseudo-randomly scattered throughout the
 table. This method is very fast but has one drawback - the
 assembler is usually not able to completely fill all positions
 in the table. Thus a symbol table full error message does not
 necessarily mean that every position in the table is really
 full. It simply means the assembler was unable to put any
 more symbols in the table due to the hashing technique used.
 However, if the number of 12 byte slots is a prime number, the
 hashing technique used will fill every slot in the table and
 examine each slot only once. The larger the table, the faster
 the hashing method will execute and accordingly, the faster
 the assembler will run. If possible, it is good to have 50%
 more space in the symbol table than will be required to
 actually hold the number of symbols in a program.

LOCAL LABEL LIST
 This list contains all of the local labels sequentially
 encountered in the source code. Local labels are entered and
 searched sequentially. Each local label requires 4 bytes, 1
 byte for the representation of the local label, 2 bytes for
 the address and 1 byte for flags. This list should contain
 enough locations for all of the local labels used in a single
 source module.

SOURCE BUFFER
 This is the buffer which holds the source program to be
 assembled. The assembler reads only one line of source code
 at a time. The assembly operation is carried out on each line
 individually. This buffer may be any size so long as it will
 hold the longest line that may be encountered in the source.

FLEX 6809 Relocating Assembler

-63-

MACRO TEXT BUFFER
 This is the buffer where macros are stored upon definition.
 If few macros are to be used, it can be very small. The more
 macros anticipated, the larger the buffer should be.

MACRO NAME TABLE
 This is a table where macro names and locations are stored.
 Each entry requires 12 bytes, 8 for the macro name, 2 for the
 address of the macro body in the macro text buffer and 2 for
 flags. Again, if few macros are to be defined, this table can
 be quite small.

MACRO ACTIVATION BUFFER
 This buffer is an area where the macro processor builds an
 activation stack for all macros currently under execution.
 Each time a macro is called, certain information about it is
 placed on this stack. If no parameters are supplied on the
 calling line, an entry on the stack requires some 10 bytes.
 Any calling line parameters will raise this amount. If macros
 are not nested , only one entry will be on the stack at a time.
 However, if one macro calls another, there must be two entries
 on the stack and so on. The minimum size of the stack
 necessary depends on tne amount of macro nesting done.

The assembler attempts to provide a general sizing of these tables for
any size system in which it is run. This sizing is done according to
the following approximate formulae:

 Let AVM = MEMEND - MEMBEG
 where AVM implies available memory
 MEMEND refers to the end of memory as in FLEX
 MEMBEG is the start of the RAM buffer area
 Then

 SYMBOL TABLE = (AVM-256 bytes)*0.5
 LOCAL LABEL LIST = (AVM-256 bytes)*0.25
 MACRO TEXT BUFFER = (AVM-256 bytes)*0.1875
 MACRO NAME TABLE = (AVM-256 bytes)*0.03125
 MACRO ACTIVATION BUFFER = (AVM-256 bytes)*0.03125
 SOURCE BUFFER = AVM-(sum of above spaces)

These table sizes can be set manually by the programmer if so desired.
See the section on adapting to your system for details.

FLEX 6809 Relocating Assembler

-64-

Command Line Parameters

In the section on using the assembler at the beginning of this manual,
command line parameters are discussed. That section describes how to
place a parameter on the command line for passing into the source, but
it does not elaborate on how the programmer tells the assembler where in
the source to substitute those parameters. If you have read the section
on macros, you should already understand the concept of parameter
substitution. If not, read that section before continuing here.

Much as in macro parameter substitution, there are 2-character symbols
or dummy parameters which, if placed anywhere in the source, will be
replaced by the parameters supplied on the command line. In macros, the
parameters from the macro calling line were substituted into the macro
body during expansion of the macro. Here, the parameters from the
command line are substituted into the source as it is read in from the
disk. In macros, there were 10 possible parameters. Here there are
three possible. The 2-character dummy parameters for these three are
’&A’, ’&B’, and ’&C’. These correspond to the three possible command
line parameters represented here:

 +++RELASMB,<filename>,+<options>,+<prm.A>,<prm.B>,<prm.C>

As can be seen, the three parameters are separated by commas.

Just as in macros, the dummy parameters can be ignored by placing a
backslash directly in front of the ampersand. Thus the following line
of edited source:

 VALUE EQU MASK\&COUNT

would be read into the assembler as:

 VALUE EQU MASK&COUNT

A quick example should help clarify the preceding descriptions. The
following program contains one dummy parameter, ’&A’.

 * ROUTINE TO OUTPUT TO ONE OF TWO PORTS
 OPT PAG,CON
 TTL OUTPUT ROUTINE FOR PORT #&A
 PAG
 IFN (&A=0)|(&A=l)
 ERR NOT A VALID PORT NUMBER
 ELSE
 IF &A=0
 ACIA EQU $E000
 ELSE
 ACIA EQU $E004
 ENDIF
 ENDIF

FLEX 6809 Relocating Assembler

-65-

 OUTCH LDB ACIA
 ANDB #$02
 BEQ OUTCH
 STA ACIA
 RTS

 END

Now if this file were assembled with a command line like:

 +++RELASMB, FILE, +BGDS, +1

(assuming the file is very creatively called, ’FILE’), we would see the
following assembled output:

 OUTPUT ROUTINE FOR PORT #l TSC ASSEMBLER PAGE 1

 IFN (1=0)|(1=1)
 ERR NOT A VALID PORT NUMBER
 ELSE
 IF 1=0
 ACIA EQU $E000
 ELSE
 E004 ACIA EQU $E004
 ENDIF
 ENDIF

 0000 F6 E004 OUTCH LDB ACIA
 0003 C4 02 ANDB #$02
 0005 27 F9 BEQ OUTCH
 0007 B7 E004 STA ACIA
 000A 39 RTS

 END

 0 Error(s) Detected

Note that the first page of output is not shown.

FLEX 6809 Relocating Assembler

-66-

IX. ERROR AND WARNING MESSAGES

The assembler supports warning messages and two types of error messages:
fatal and non-fatal. A fatal error is one which will cause an immediate
termination of the assembly such as not enough memory. A non-fatal
error results in an error message being inserted into the listing and
some sort of default code being assembled if the error is in a code
producing line. The assembly is allowed to continue on non-fatal
errors. Warning messages are handled much like non-fatal errors: the
message is inserted in the output listing and the assembly is allowed to
continue. These warning messages may be suppressed by the ’W’ option in
the command line. Error messages may not be suppressed.

All messages are output as English statements - not as error numbers.
These messages announce violations of any of the rules and restrictions.
set forth in this manual and are, therefore, essentially
self-explanatory. Error messages are output with three asterisks
preceding the message. Warning messages are output with two asterisks
preceding the message. This can be used to quickly locate the messages
either by eye or with an editor.

Possible NON-FATAL error messages are as follows:

 EXTERNAL SYMBOL NOT ALLOWED IN THIS CONTEXT
 EXTERNALLY DEFINED SYMBOL USED INTERNALLY
 GLOBAL SYMBOL NOT DEFINED IN THIS MODULE
 ILLEGAL CONSTANT
 ILLEGAL INDEXED MODE
 ILLEGAL LABEL
 ILLEGAL OPERAND
 ILLEGAL OPTION
 ILLEGAL RELOCATABLE EXPRESSION
 LOCAL LABEL TABLE OVERFLOW
 MACRO EXISTS
 MULTIPLY DEFINED EXTERNAL SYMBOL
 MULTIPLY DEFINED SYMBOL
 NESTED COMMON BLOCKS NOT ALLOWED
 NOT ALLOWED IN THIS CONTEXT
 ONLY ABSOLUTE SYMBOLS ALLOWED IN THIS CONTEXT
 ONLY ONE EXTERNAL SYMBOL ALLOWED IN THIS CONTEXT
 OPERAND OVERFLOW!
 OVERFLOW!
 PHASING ERROR DETECTED
 RELATIVE BRANCH TOO LONG
 SHORT BRANCHING TO EXTERNAL LABELS NOT ALLOWED
 SYMBOL TABLE OVERFLOW
 SYNTAX ERROR
 TOO MANY COMMON BLOCKS!
 UNBALANCED CLAUSE
 UNDEFINED IN PASS 1

FLEX 6809 Relocating Assembler

-67-

 UNRECOGNIZABLE MNEMONIC OR MACRO
 UNDEFINED SYMBOL

A couple of these could use some elaboration. The OPERAND OVERFLOW
message results from attempting to generate too much data from a single
FCB, FDB, or FCC instruction. A maximum of 256 bytes of data can be
generated by a single instruction of that type. An example of the
OVERFLOW error is when LIB files are nested more than 12 levels deep.
The UNBALANCED CLAUSE message results when one directive of a clause is
missing such as an ENDIF with no IF. The NOT ALLOWED IN THIS CONTEXT
message is generally associated with macros, ie. when an operation is
attempted that is illegal inside a macro or vice versa. The PHASING
ERROR DETECTED message is reported if the assembler detects an
incongruity in addresses between pass one and two. Chances of this
occurring are small, but the assembler will report such an error at the
first detection. Phasing errors are only detected on lines which
contain a label.

Possible FATAL error messages are:

 ILLEGAL FILE NAME
 NO SUCH FILE
 ILLEGAL OPTION SPECIFIED
 INSUFFICIENT MEMORY
 MACRO OVERFLOW!

The first three are associated with errors in the command line. The
INSUFFICIENT MEMORY message is issued when automatic table setup is
enabled and there is not at least 3K of buffer area. The MACRO OVERFLOW
message occurs when any of the macro buffers is overflowed.

Possible warning messages are as follows:

 FORCED ADDRESS TRUNCATED
 IMMEDIATE VALUE TRUNCATED
 ILLOGICAL FORCING IGNORED
 NO PRECEDING ABS--ORG IGNORED

The first warning is printed if an address is forced to 8 bits (with the
’<’ character) and must be truncated to fit. The second occurs on lines
where an immediate value must be truncated to fit in 8 bits. For
example, ’ LDB #$42E5’ would result in such a warning. The third is
issued if address length forcing (with the ’<’ or the ’>’) is done in an
operand where not possible. For example, the instruction ’ LDB
<[BUFCNT]’ would result in such a warning. Finally, the fourth occurs
when an ORG is put into code without first informing the assembler that
the code is to be absolute with an ABS directive.

FLEX 6809 Relocating Assembler

-68-

As stated in a previous section, the total number of errors is reported
at the end of the assembly and if warning messages are enabled, the
number of warnings are also output.

FLEX 6809 Relocating Assembler

-69-

X . ADAPTING TO YOUR SYSTEM

In general, if you have FLEX up and running and have at least 16K of
user memory, there will be no need for any adapting whatsoever. Some
users, however, always feel the need to modify certain things and this
section describes how to make all the changes which we felt might be
desired (and which would be feasible). With the exception of MEMEND,
these changes must all be made to the object code of the assembler.
This can be done by loading the assembler (with a GET RELASMB.CMD
command), making the desired changes in memory, ard saving the result on
disk (with the SAVE command).

MEMEND

 If using the automatic table setup which the assembler
 performs for you, the MEMEND value in FLEX should be set to
 the last address which the assembler should use. FLEX
 initializes MEMEND to the actual end of user memory. You may
 have an application where you don’t want this to be the case.
 If so, set MEMEND manually before executing the assembler.

EXIT ADDRESS

 When the assembler is finished, it jumps into FLEX’s warm
 start. If you wish it to exit to some other address, place
 that address at location $02FC.

OUTPUT CHARACTER ROUTINE

 As supplied, the assembler outputs through FLEX’s PUTCHR
 routine. This takes advantage of the escape-return sequence
 in FLEX to pause or terminate an output Tisting. If, however,
 you wish to output through some user supplied output routine,
 place the address of such a routine at location $02FF. This
 routine should output the character in the A register and
 return without affecting any registers except the condition
 codes.

FLEX 6809 Relocating Assembler

-70-

LINES PER PAGE

 If the page mode is selected, the assembler automatically
 places a header at the top of each page (with the current page
 number) and performs a page eject at the bottom. The number
 of lines which are output before the page eject occurs
 (including the header lines) is set at location $001C in the
 assembler. This value is currently set to 58 lines. Change
 if desired.

LABELS PER LINE
 The symbol table output is done with multiple symbols per
 line. Currently there are 5 labels per line. If desired,
 this number can be changed by setting the byte at location
 $001D.

AUTO FIELDING COLUMNS

 As explained in the special features section, this assembler
 performs auto fielding. The columns in which the fields are
 placed are currently set to 10, 17, and 27 for the mnemonic,
 operand, and comment fields respectively. If desired, these
 columns can be changed by altering the three bytes beginning
 at location $001E.

SETTING UP THE TABLES MANUALLY

 If you wish to set up the necessary tables and buffers
 manually, you may do so. This requires that you supply the
 starting and ending addresses of the five tables described in
 the section on special features and set a byte called MANUAL
 to some non-zero value. This MANUAL byte is located at $0003
 and is currently equal to zero. The assembler tests this byte
 and if zero, performs automatic table setup. If non-zero, the
 assembler picks up the table start and end addresses from the
 following locations:

 SOURCE BUFFER BEGIN $0004
 SOURCE BUFFER END $0006
 MACRO NAME TABLE BEGIN $0008
 MACRO NAME TABLE END $000A
 MACRO ACTIVATION BUFFER BEGIN $000C
 MACRO ACTIVATION BUFFER END $000E
 MACRO TEXT BUFFER BEGIN $0010
 MACRO TEXT BUFFER END $0012
 LOCAL LABEL LIST BEGIN $0014
 LOCAL LABEL LIST END $0016
 SYMBOL TABLE BEGIN $0018

FLEX 6809 Relocating Assembler

-71-

 SYMBOL TABLE END $001A

 NOTES:

 1) The Macro Name Table and the Symbol Table must be an even
 multiple of 12 bytes in size!

 2) The assembler uses a large stack area to maintain all its
 temporary variables and buffers. This stack requires 0AD0 hex
 bytes of RAM starting at FLEX’s MEMEND and growing down from
 there. This implies two things: if manually setting up the
 tables you must leave this space free and if you want to move
 where the stack resides, you must set MEMEND accordingly as
 the assembler will always place its stack so that it sets up
 against MEMEND.

 3) When manually setting up the tables, you will probably want
 to use all the space between the end of the assembler itself
 and (MEMEND-$0AD0). Thus the lowest table would start just
 after the last byte of the assembler as found on the disk and
 the highest table would end at (MEMEND-$0AD1).

 4) The tables must be put into memory in the exact same order
 as they are listed above. They must be put into contiguous
 memory.

FLEX 6809 Relocating Assembler

-72-

XI. APPENDIX A: LIST OF PRIME NUMBERS FROM 773 TO 2239

The symbol table is a large table that contains information,about each
symbol used in the source module. Each symbol in this table is
addressed by using a hash function. This hash function uses the
characters that make up the symbol and yield an address into the symbol
table. It is possible that two symbols will yield the same address in
the table. When this happens the second symbol is put into another slot
in the table based upon its initial hash value. Therefore, it is
possible that this table is not quite full, yet the assembler will
report a symbol table overflow message. The hash algorithm is such that
it is optimal when the table size is a prime number of slots. Included
is a table of prime numbers from 773 to 2239.

 773 787 797 809 811 821 823 827 829 839
 853 857 859 863 877 881 883 887 907 911
 919 929 937 941 947 953 967 971 977 983
 991 997 1009 1013 1019 1021 1031 1033 1039 1049
1051 1061 1063 1069 1087 1091 1093 1097 1103 1109
1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
1201 1213 1217 1223 1229 1231 1237 1249 1259 1277
1279 1283 1289 1291 1297 1301 1303 1307 1319 1321
1327 1361 1367 1373 1381 1399 1409 1423 1427 1429
1433 1439 1447 1451 1453 1459 1471 1481 1483 1487
1489 1493 1499 1511 1523 1531 1543 1549 1553 1559
1567 1571 1579 1583 1597 1601 1607 1609 1613 1619
1621 1627 1637 1657 1663 1667 1669 1693 1697 1699
1709 1721 1723 1733 1741 1747 1753 1759 1777 1783
1787 1789 1801 1811 1823 1831 1847 1861 1867 1871
1873 1877 1879 1889 1901 1907 1913 1931 1933 1949
1951 1973 1979 1987 1993 1997 1999 2003 2011 2017
2027 2029 2039 2053 2063 2069 2081 2083 2087 2089
2099 2111 2113 2129 2131 2137 2141 2143 2153 2161
2179 2203 2207 2213 2221 2237 2239

FLEX 6809 Relocating Assembler

-73-

NOTES:

FLEX 6809 Relocating Assembler

-74-

