
 COPYRIGHT © 1981 by
 Technical Systems Consultants, Inc.
 111 Providence Road
 Chapel Hill, North Carolina 27514
 All Rights Reserved

 ™ UniFLEX is a trademark of Technical Systems Consultants, Inc.

 ™ FLEX is a trademark of Technical Systems Consultants, Inc.

 COPYRIGHT NOTICE

This entire manual and documentation is provided for
personal use and enjoyment by the purchaser. The
entire contents have been copyrighted by Technical
Systems Consultants, Inc., and reproduction by any
means is prohibited. Use of this manual, or any part
thereof, for any purpose other than single end use is
strictly prohibited.

 Fortran 77

Table of Contents

 Page

 I. Introduction 1

II-A. Running the Fortran Compiler Under UniFLEX 3

II-B. Running the Fortran Compiler Under FLEX 7

 III. Language Constructs 9

 IV. Data Types and Constants 13

 V. Arrays 15

 VI. Expressions 17

 VII. Specification Statements 21

VIII. DATA Statement 25

 IX. Assignment Statements 27

 X. Control Statements 29

 XI. Input/Output Statements 33

 XII. FORMAT Specification 39

XIII. Main Program 43

 XIV. Functions and Subroutines 45

Appendixes

 A. Compilation Error Messages 49

 B. Run-time Error Messages 55

 C. Interfacing with External Routines 59

 D. Standard Functions 61

 E. Reserved Words 63

 -i-

Fortran 77

 -ii-

 Fortran 77

1. INTRODUCTION

This manual describes the use and operation of the FORTRAN compilers
which run under the UniFLEX™ and FLEX™ operating systems (UniFLEX and
FLEX are trademarks of Technical Systems Consultants, Inc.).

FORTRAN is a high-level computer programming language. This particular
system runs on the Motorola 6809 series of microcomputers. This manual
describes the FORTRAN programming language features and its usage with
the UniFLEX and FLEX operating systems.

No attempt is made in this manual to teach programming in FORTRAN;
rather, the manual describes in detail the FORTRAN language and any
details specific to its use with the operating system.

Fortran 77 requires the relocating assembler and linkage editor package
in order to compile and execute Fortran programs. The user should
obtain and be familiar with these products before using the Fortran
system.

Technical Systems Consultants' Fortran conforms to ANSI FORTRAN-77 (ANSI
X3.9-1978) subset of the FORTRAN language, with the following
exceptions:
 The INTRINSIC and SAVE statements are ignored.
 The EQUIVALENCE statement is not implemented.
 The BACKSPACE statement is only allowed an direct access
 The ENDFILE statement performs no useful function.
 Statement functions are not supported.
 Variable names may be of any length with 7 characters significant.
 All keywords (see appendix E) are reserved in all contexts and
 must not be used as identifiers.
 Direct access files are not available under FLEX.
In addition, Technical Systems Consultants' Fortran contains some
features of the full FORTRAN language, most notably list-directed I/O
and expanded form of the OPEN statement.

Some notation is used throughout this document which should be explained
here. Uppercase words are keywords and must be used exactly as they
appear, although they may be spelled in either case. Lowercase words
stand for some object defined by the user, either an identifier or
expression, etc. Items enclosed within the characters "<" and ">" stand
for some concept described in the surrounding text. Items enclosed
within square brackets, "[" and "]", indicate an optional item which may
or may not be present, depending on the user's wishes. The ellipsis,
"...", is used to indicate that a given item may be repeated and when it
follows an optional item; that item may occur zero or more times. E.g.
the description:
 SUBROUTINE sub [(parm [, parm]...)]
allows any of the following statements:
 SUBROUTINE sub1
 SUBROUTINE sub2(parm1)
 SUBROUTINE sub3(parm2, parm3)
 SUBROUTINE sub4(parm4, parm5, parm6)

 -1-

Fortran 77

 -2-

 Fortran 77

11-A. Running the Fortran Compiler Under UniFLEX

The purpose of running the Fortran compiler is to take a program which
is written in the FORTRAN programming language and produce a program
which can be executed by the 6809 processor. This process involves many
steps, most of which are automatic. The steps involved are:

 1. Scan the FORTRAN source program and produce an assembly language
 file which corresponds to that program.

 2. Assemble this file, creating a relocatable binary program.

 3. Use the linkage editor to link this program with the FORTRAN
 run-time library, creating an executable program.

Steps 2 and 3 are optional and in no case will they be executed if your
program contains errors.

The Command Line

The syntax of the command to execute the Fortran compiler is:

 ++ f77 file ... [+options]

The plus signs are UniFLEX's prompt, "f77' is the name of the Fortran
compiler. One or more input files may be specified, given by "file..."..
If more than one file is specified, the result is the same as if all the
files were appended in the order given. The options may appear anywhere
on the command line and are any combination of the following:

 a - Save the assembly language output file. This option will
 inhibit the compiler from automatically calling the assembler
 and linkage editor.

 b - Suppress the creation of an assembly file. If this option is
 specified, the compiler will go through all the actions
 necessary to compile the given programs, but will produce no
 executable output.

 c - Suppress calling the linkage editor. The compiler will create
 and assemble an assembly file and the resulting relocatable
 output file will be preserved. This is useful if the source
 files do not comprise a complete program and the linking process
 should be postponed.

 d - Instructs the compiler to place additional code in the assembly
 language output file for debugging purposes. Primarily, this
 information will provide a post-mortem dump of all active
 variables in the program if it aborts for any reason. This
 option also implies the +t and +n options.

 l - List the source program. If not specified, only those lines
 which are in error will be listed.

 -3-

Fortran 77

 n - Keep track of the exact execution line number. This option will
 make the compiled program somewhat larger, but if a fatal error
 occurs, the systen will be able to indicate exactly the last
 line executed in the program. This option automatically implies
 the +t option.

 o - Specify the final output file. Normally, the Fortran compiler
 will create the final (executable program with a name which is
 derived from the first source file name (see below). If this is
 undesirable, the user may specify the output name directly by
 using +o=XXX, where XXX is the desired output file name.

 s - Print smumary information at the end of each module compiled.
 This option lists such information as thie time and size of each
 variable in the program, external programs which were called by
 this program segment, etc.

 t - Keep information about the execution of the program and print an
 execution trace-back if a fatal error occurs. If the +n option
 (above) is not on, this will simply print the subroutines and
 functions which are active in the current program in reverse
 order. If the +n option is also on, the current line being
 executed in each program unit will be listed.

 x - Generate shared text output from the linkage editor. Normally,
 Fortran will generate a "no-text" output file but this option
 allows those users who wish to do so to generate shared text

Source file names for Fortran programs must be of the form:

 XXXX.f

The ".f" is REQUIRED! This file name is used to create all internal
files used by the compiler system as follows
 Source file: XXXX.f
 Assembly file: XXXX.a
 Relocatable object: XXXX.r
 Executable output: XXXX
 Literals: XXXX.s
The "Literals" file is a temporary file used by the Fortran compiler.
It is automatically deleted by the compiler when the compilation is
complete and as such, users should refrain from naming files "XXXY.s".

If more than one input file is specified, the first file name given is
used to form these file names. The user has the ability, via the +c
option, to specify the file name of the executable output file, but all
others are given implicitly as above.

 -4-

 Fortran 77

Examples:

The simplest example is one which compiles a Fortran program which is
complete in one file, producing an executable file. An example of this
would be:
 ++ f77 main.f
This command instructs the Fortran compiler to compile the program
"main.f", then call the assembler and linkage editor to produce an
executable program. Nothing except error messages will be printed on
the standard output. The command line:
 ++ f77 main.f +ls
would be the same as the previous one, except that a listing of the
program along with some summary information about each module within the
program would be printed. Again, this command would create an
executable program called "main".

Suppose you had a program which was contained in the files "program1.f",
"program2.f", "program3.f" and "program4.f". The command line:
 ++ f77 program[1-4].f +o=program
would compile the files "program1.f", "program2.f", "program3.f" and
"program4.f" in that order and create an executable program called
"program".

Programs may be broken into modules and compiled together as in the
example above, or they may be compiled separately, each creating its own
binary file. In this case, the linkage editor must be invoked by the
user to create an executable program from the pieces. An example of
this would be:
 ++ f77 program1.f +c
 ++ f77 program2.f +c
 ++ f77 program3.f +c
 ++ f77 program4.f +c
 ++ link-edit program[1-4l.r +l=F77.runlib +no=progran
This sequence of commands would compile each of the modules separately
and create a binary file for each one. This set of binary files would
then be combined using the linkage editor to create an executable
program. This example produces a program which is identical to the one
produced by the example above.

Fortran programs may call external routines which have been written in
another language, such as assembly language. The details of this
mechanism are explained fully in Appendix C. Whenever this is done, the
user is responsible for linking the modules together to create the
executable program. An example of this might be when the user wishes to
write his own random number function. Let us assume that he has done so
and that the object file for this function is in the file "rnd.r". Now
assume that the user's program is the same as above except that we wish
to include this random number function instead of the library function.
This could be accomplished by the commands:
 ++ f77 program[1-4].f +c
 ++ link-edit program[1-4].r rnd.r +l=F77.runlib +to=program

 -5-

Fortran 77

 -6-

 Fortran 77

11-B. RUNNING THE COMPILER UNDER FLEX

In order to execute the Fortran compiler under the FLEX operating
system, a source file must exist on a disk. This file may then be
compiled, using the Fortran compiler, into an assembly language program.
This assembly language program must then be assembled and linked with
the Fortran runtime library, using the relocating assembler and linkage
editor, respectively. The command used to invoke the Fortran compiler
is:
 +++ F77 <source-file> [+options]
The <source-file> is the name of the Fortran program which is to be
compiled. It is assumed that this file ends with the extension ".TXT",
but this may be overidden by specifying any other extension. The
Fortran compiler uses several files based on the source file name, as
follows:
 XXXX.TXT - Source file
 XXXX.LIT - Temporary file
 XXXX.ASM - Assembly language output file
The file "XXXX.LIT" is used Internally by the Fortran compiler and will
be deleted after the program has been compiled. Because of this, it is
advised that the user refrain from naming programs "XXXX.LIT".

The options mentioned above are the same as the options available under
UniFLEX, as described in the previous section. The options "a", "c" and
"x" are not available under FLEX.

Installation Procedure

The following files must be on the "system" disk when the Fortran 77
compiler is executed. These files may be copied from the master disk to
your normal system disk, or alternatively, they may be copied to a
separate disk used only for the Fortran system.

 Needed at Compile Time Needed at Assembly/Link Edit Time
 ====================== =================================
 F77.CMD RELASMB.CMD LLOAD.CMD
 SYMBOLS.F77 F77.LIB (*)
 ERRORS.F77 RUNLIS.F77 (*)

The files marked with an asterisk (*) must reside on the "work" disk,
not on the 'system" disk.

In order to run a Fortran program, a mutli-step process must take place.
First, the program must be compiled. This step takes a Fortran source
program and produces a relocatable assembly language source file as
output. The second step is to use the relocating assembler to assemble
this file. This produces a relocatable object module. The last step is
to use the linkage-editor to link all the desired object modules
together, along with the Fortran runtime package, and produce an
executable program. The following statements give a schema for this
process:

 -7-

Fortran 77

 +++ F77 file
 +++ RELASMB file.ASM +sluy
 +++ LLOAD file.REL +l.RUNLIB.F77 +o=file.CMD +a=0

In the schema above, "file" represents the name of the Fortran program
being compiled. This schema assures that the entire Fortran program is
composed of a single source file. If this is not the case, the first
two steps may be repeated as many times as necessary to compile and
assemble each of the modules of the program. The last line would then
be extended to:

 +++ LLOAD file-1.REL ... file-n.REL +l=RUNLIB.F77 +o-file.REL +a=0

In this schema, "file-1.REL" stands for the first object module of the
program, 'file-2.REL" would be the second, and so on until "file-n.REL"
which would be the last module of the program.

Refer to the Relocating Assembler and Linkage Editor manual for more
details on how to run these programs. One thing to note is that in
order to obtain an executable Fortran program, the "+a" option must be
used with the link editor. Also, Fortran programs must be assembled
using the "+u" option of RELASMB.

We have provided a test program on the Fortran master disk. The
following are the commands necessary to compile and execute this test
program.

 +++ F77 svtest +l
 +++ RELASMB svtest.ASM +sluy
 +++ LLOAD svtest.REL +l=RUNLIB.F77 +o=svtest.CMD +a=0
 +++ svtest

 -8-

 Fortran 77

111. LANGUAGE CONSTRUCTS

This chapter describes the basic components of a FORTRAN program.

A FORTRAN program is composed of one or more program units. Each of
these units may be compiled separately, using the +c option, or they may
all be compiled together at one time. The advantage of separate
compilation is that if only a subset of the total modules (or units -
the terms are interchangable) changes, only those modules which have
changed need be re-compiled. However, for simple programs, the
advantage of single compilation is that the entire program can be
compiled and loaded in one single command, producing an executable
program. (Under FLEX, the user is responsible for assembling and
linking the resulting modules together to form an executable program).

A program unit is either a MAIN program, a SUBROUTINE or a FUNCTION.
The details of each of these units are described in later chapters.
Note that a program must contain exactly one MAIN program and may
contain one or more SUBROUTINEs or FUNCTIONs.

Each program unit is composed of records. A record In this case may be
one or more lines. A line is a sequence of characters, terminated by a
carriage return. If the information for a given record will not fit on
one line, the record may be continued to another line. A single record
may contain up to 10 lines. Each line has fields which have special
meanings. Columns 1 through 5 comprise the label field. Column 6 is
the continuation-marker field. Columns 7-72 are the text field.

For any given record, the first line may contain a value in the label
field. This value must be a non-zero, unsigned integer. If the label
field does not contain a label, this field must be completely blank.

If a record is to contain more than one line, all lines except the first
must be marked as "Continuation" lines. This is done by placing a
non-blank character in column 6. Any line which contains a non-blank
character in column 6 is assumed to be a continuation of the previous
line.

Columns 7 through 72 of all lines in every record comprise the text
portion of the record and contain all program elements except record
labels, as described above.

For the user's convenience, the horizontal tab character may be used to
simplify the typing of FORTRAN programs. If a tab character appears, in
any column of a line before column 7, the tab character is replaced by
sufficient spaces so that the following character is in column 7. If
the tab character appears after column 7, it is replaced by a blank.
There is one exception to this rule: If the character immediately
following the tab is the asterisk character '*', then the tab is really
a tab to column 6 and the asterisk is placed in the continuation field
of the line. The tab feature is not available under FLEX.

 -9-

Fortran 77

Any line which begins with any of the characters 'c', 'C', or '*' in
column 1 is a comment line. Comment lines are totally ignored by the
compiler and are only for use by humans. Also, comment lines are never
part of a record and may not appear between continuation lines. A line
with no characters other than the carriage return is also considered a
comment line.

Programs are made up of symbols, some of which are:
 Keywords and identifiers
 Special symbols
 Character strings
 Numbers
Each of these symbols has specific syntax or construction rules. They
will be explained in the sections below:

Keywords and Identifiers
 These symbols are the words which are used to write a Fortran
 program. They must begin with a letter and may contain any number
 of letters or digits following the initial letter. Both upper and
 lower case letters are acceptable, but upper case will be
 implicitly mapped to lower case by the compiler. Thus the
 identifier "IDENT" is the same identifier is "ident". Although
 identifiers may be of any length in the program, only the first 7
 characters are significant. Keywords must be spelled completely,
 with all characters significant.

Special symbols
 There are some special symbols in a Fortran program. These are
 used in arithmetic expressions and as punctuation. They will be
 described in more detail in the sections which deal with these
 subjects. Notice that they must always be written exactly as they
 appear in this document. E.g. the symbol "**" is not the same as
 "* *".

Character strings
 A character string is any sequence of characters, enclosed in
 single quotes. If a character string extends past column 72, then
 it is assumed that the line is continued and the first character of
 the next line in the record follows the character in column 72. It
 is not advisable to continue character strings in this fashion
 unless absolutely necessary. If it is desired to have the
 character string contain the single quote character itself, the
 quote must appear twice consecutively. Thus the string 'ab''cd'
 stands for the string "ab'cd".

Numbers
 A number is a symbol which represents some numeric quantity. These
 quantities come in two varieties, integer numbers and real numbers.
 An integer is what is normally called a "whole" number. The
 numbers 1, 23, -256, are all integers. A real number is a number
 which may contain a fractional part. Real numbers are not the same
 as integers, even if they contain the same value. Some real
 numbers would be 3.14159. 6.02e+23 and 0.0. Notice that 0.0 is a
 real number but 0 is an integer. A number is an optional sign
 character ('-' or '+'), followed by a string of digits, optionally

 -10-

 Fortran 77

 followed by a decimal point followed by another string of digits,
 optionally followed by an exponent which is written as the letter
 'e' followed by a signed integer. Any number which contains a
 fractional part or an exponent is considered to be a real number.

The Fortran standard defines that a FORTRAN program which has had all
blanks removed (except from character strings and FORMAT statements) is
equivalent to the same program with the blanks in it. This
implementation uses blanks as separators and thus differs from the
standard in this point. This is only significant in the fact that basic
symbols (as described in the section above) may not contain blanks as
would be allowed by the standard. Where there are keyword sequences
which may include blanks, this implementation allows either spelling.
E.g. "GO TO" is the same as "GOTO", but "ID ENT" is not the same as
'IDENT".

 -11-

Fortran 77

 -12-

 Fortran 77

IV. DATA TYPES AND CONSTANTS

There are four types of data in FORTRAN programs. These are:
 Integer
 Real
 Logical
 Character
Each type is different and is used to represent different types of data.

Integers are whole numbers; 0, 1, 2, ...

Reals are numbers which may or may not contain fractional parts; 0.0,
3.14, -2.65, ...

Logical values are the values .TRUE. or .FALSE. These values indicate
a "truth" value of either true or false.

Character data are strings of characters, built from the ASCII character
 set. Any printable character is allowed as an element of a
 character string.

Symbolic names (or identifiers) in a FORTRAN program have an implicit
type associated with them. This type is based on the first character of
the identifier. It may be overidden by the use of a "type" declaration
as discussed in chapter VII. If not overidden, any identifier which
begins with the character 'I' through the character 'N' is considered to
be an integer. All other identifiers are considered to be reals. These
implicit type definitions way also be changed by using the IMPLICIT
statement as discussed in chapter VII.

FORTRAN programs may contain explicit constant values of the various
types. These constants are written using the rules described in the
previous chapter. The logical constants are written as ".TRUE." and
".FALSE.".

 -13-

Fortran 77

 -14-

 Fortran 77

V. ARRAYS

An array is a nonempty sequence of data. An array element is one member
of this sequence. An array name is the symbolic name of the entire
array. An array element name is an array name qualified by a subscript.

Arrays are used to organize related data into an easily managed form.
Any particular item from the set of data may be changed or used by
simply indicating which item within the set it is.

An array is declared using an array declarator most any place a normal
variable may be declared. For more information, see chapter VII on
declarations. The form of an array declarator is:
 a(d [.d]...)
where:
a is the array name.
d is a dimension declarator which is of the form
 [b1:]b2
 where b1 and b2 are integer expressions. If b1 is not present, the
 array will have elements which are numbered from 1 to b2,
 inclusive. If b1 is present, it must be less than b2 and the array
 will have elements which are numbered from bl up to b2, inclusive.
 An array declarator may contain one, two or three dimensions. If
 the array is being declared as a dummy array used as a parameter in
 a subprogram, then the array bounds may be declared using an '*' in
 place of a constant expression. This is because the actual bounds
 are not needed in the declaration of an array passed as a
 parameter.

An array declarator declares a collection of data items which are
accessed by a common mechanism. This mechanism is known as array
indexing. The general form of an array index expression (also refered
to as an array subscripting expression) is:
 a(e [. e]...)
where:
a is the array name.
e is an Integer expression.
The effect of array indexing is to select a particular element of the
array for use. An array element, given by a subscripted expression, is
equivalent to a single simple variable.

Arrays are represented in the computer memory in an organized fashion,
with the separate array elements in a specific order. For one
dimensional arrays, this ordering is simple. Array element i "follows"
element i-1 and "precedes" element i+l. For multiple dimensional
arrays, the first dimension "varies most rapidly". That is, element
(i, j) "follows" element (i-1, j) and "precedes" element (i+1, j).
Array element (n, j) is "followed" by element (m, j+1), if "n" and "m"
are the upper and lower bounds for the first dimension, respectively.
For a three dimensional array, the process is similar.

 -15-

Fortran 77

 -16-

 Fortran 77

VI. EXPRESSIONS

This chapter describes the formation, interpretation and evaluation
rules for expressions. An expression may be any one of arithmetic,
relational or logical expressions. Expressions are formed from
operands, operators and parentheses.

Arithmetic Expressions
An arithnetic expression is made up of combinations of the following:
 Arithmetic Primary
 Arithmetic Factor
 Arithmetic Term
 Arithmetic Expression
Each of these components will be described below:

Arithmetic Primary
 A primary is one of:
 Unsigned numeric constant
 Arithmetic variable reference
 Arithmetic array element reference
 Arithmetic function reference
 Arithmetic expression enclosed in parentheses

Arithmetic Factor
 A factor is formed as:
 Primary
 Primary ** Factor

Arithmetic Term
 A term is formed as:
 Factor
 Term / Factor
 Term * Factor

Arithmetic Expression
 An arithmetic expression is formed as:
 Term
 + Term
 - Term
 Arithmetic expression + Term
 Arithmetic expression - Term

For arithmetic expressions, the operands must always be either of
integer or real type. The operators described above are not defined on
any other types.

 -17-

Fortran 77

The operators mentioned above have the following meanings:

 Same as y + y
 Add x to y x + y
 Negate y - y
 Subtract y from x x - y
 Multiply x by y x * y
 Divide x by y x / y
 Exponentiate x to the power y x** y
 Meaning Operation

where: x denotes the operand to the left of the operator
 y denotes the operand to the right of the operator

Evaluation of a given operator is described in the tables below:

 Type and Interpretation of x + y

 r = x + y r = x + float(y) Real
 r = float(x) + y i = x + y Integer

 Real Integery
 x

 Type and Interpretation for x ** y

 r = x ** y r = x ** y Real
 r = float(x) ** y i = x ** y Integer

 Real Integery
 x

In the tables above, 'i =' indicates that the result is of type integer
and 'r =' indicates that the type is real.

Logical Expressions
A logical expression is one which yields a truth value, either .TRUE.
or .FALSE. A logical expression may be made up of relational
expressions or logical variables or constants, or combinations of
logical expressions. Logical expressions are combined using the logical
operators:
 .AND. Logical conjunction
 .OR. Logical disjunction
 .NOT. Logical negation
Thus a logical expression has the fortn:
 <logical expr>[<logical operator> <logical expr>]...
The logical operators have the following interpretation:

 .NOT. This is a unary operator. The value of .NOT. <expr> is the
 inverse of the value of <expr>. Thus .NOT. .FALSE. is .TRUE. and
 .NOT. .TRUE. is .FALSE. The operator .NOT. has the highest
 precedence of the logical operators.

 .AND. This is a binary operator between two logical expressions. Its
 meaning is: if both expressions have the value .TRUE., the
 expression has the value .TRUE. If either expression has the value

 -18-

 Fortran 77

 .FALSE., the expression has the value .FALSE. The logical operator
 .AND. is higher in priority than the operator .OR.

 .OR. This is a binary operator between two logical expressions. Its
 meaning is: if both expressions have the value .FALSE., then the
 expression is .FALSE. If either expression has the value .TRUE.,
 then the expression has the value .TRUE.

Relational Expressions
Relational expressions are used to compare two expressions and determine
a logical value based on their relation. The two expressions must be of
the same type, or be coercible to the same type. The result of a
relational expression is always a logical value.

Relational expressions use the relational operators:
 .EQ. Equal to
 .LT. Less than
 .GT. Greater than
 .NE. Not equal to
 .LE. Less than or equal to
 .GE. Greater than or equal to
A relational expression is then:
 <left-expr> <relational-operator> <right-expr>
The meaning of this expression is: if the <left-expr> is in the given
relation to the <right-expr> then the relational expression has the
value .TRUE., otherwise it will have the value .FALSE. A relational
expression may be used any place a logical value is permissible, except
in a DATA statement.

Precedence of Operators and Order of Evalutation
In the sections above, the various operators within the given types of
expressions were discussed. The following section describes the
precedence relations between different types of expressions. These
precedence relations are based on the following rules, in order.
 Parenthesized expressions
 Precedence of operators
 Right-to-left interpretation of exponentiations in a factor.
 Left-to-right interpretation of multiplications and divisions in a
 term.
 left-to-right interpretation of additions and subtractions in an
 arithmetic expression.
 Left-to-right interpretation of conjunctions in a logical term.
 Left-to-right interpretation of disjunctions in a logical
 expression.

As indicated above, parentheses may be used to alter this evaluation
ordering since they are of the absolute highest precedence.

For example, using the rules above, the expression:
 a + b * c - d
is interpreted as:
 (a + (b * c)) - d

 -19-

Fortran 77

 -20-

 Fortran 77

VII. SPECIFICATION STATEMENTS

There are five kinds of specification statements:
 DIMENSION
 COMMON
 INTEGER, REAL, LOGICAL, and CHARACTER type statements
 IMPLICIT
 EXTERNAL
Additionally, the specification statements:.
 INTRINSIC
 SAVE
are allowed, but are ignored. Currently, the EQUIVALENCE statement is
not supported.

All specification statements are non-executable and must appear before
any executable statements or DATA statements within a program unit.

DIMENSION Statement
A DIMENSION statement is used to specify the symbolic names and
dimension specifications of arrays. The form of a DIMENSION statement
is:
 DIMENSION a(d) [, a(d)]...
where each "a(d)" is an array declarator of the form:
 a([l]:u [,[l:]u]...)
where "l" specifies the lower bound for a given dimension and "u" is the
upper bound for that dimension. If "l" is not present, "l" is assumed.
Refer to chapter V for a complete discussion of arrays.

Each symbolic name appearing in a DIMENSION statement declares "a" to be
an array in that program unit. Note that array declarators may appear
in COMMON statements and type-statements as well. Only one appearance
of a name in an array declarator is permitted in a given program unit.

Examples:
 DIMENSION a(100), b(0:99)

COMMON Statement
The COMMON statement provides a means of associating entitles in
different program units. This allows different program units to share
the same data without using parameters. The form of a COMMON statement
is:
 COMMON [/[cb]/] nlist [[,]/[cb]/nlist]...
where:

cb is a common block name. This name has no meaning within a program
 unit other than to name the common block and cannot be used in any
 other fashion. Common block names are significant to only 6
 characters.

nlist is a list of variable names, array names, and array declarators.
 Only one appearance of a given name may appear within all the
 common lists within a program unit. Variable names which are also
 parameters or function names must not appear within the list.

 -21-

Fortran 77

 If "cb" is not present, the common block is part of the
 "blank common" block.

 For each COMMON statement, the variables in the list "nlist" are
 declared to be part of the common block "cb". The common block
 "cb" may be referenced by more than one COMMON statement, in which
 case, the list of variables is simply appended to the list of
 variables already associated with that common block.

 When two separate program units contain a COMMON statement with the
 same common block name, "cb", the variables in each program unit
 defined within that common block will share the same address space.
 This is not true of variables not in common, as each variable in
 each program unit has its own address space, regardless of its
 name.

 Examples:
 COMMON /com1/ a, b(10), c
 COMMON // d

INTEGER, REAL, LOGICAL and CHARACTER Type Statements
These statements are used to declare variables and associate a "type"
with them. The form of the type-statement is:
 <type> v [, v]...
where:

<type> is one of INTEGER, REAL, LOGICAL or CHARACTER.

v is a variable name, array name, array declarator, function name or
 dummy procedure name.

Examples:
 INTEGER x1, abcdef, x2.
 REAL zz, iz
 CHARACTER*10 name
 LOGICAL flags(0:8190)

IMPLICIT Statement
The IMPLICIT statement allows the programmer to override the default
implied types for variables. Normally, all variables which begin with
the letters I-N are considered to be of type Integer and all other
variables are considered to be of type Real. If it is desired to have
these implied types be something else, the IMPLICIT statement allows the
programmer to specify this.

The form of the IMPLICIT statement is:
 IMPLICIT type (a [, a]...) [type(a C, a]...)]...
where:

type is one of INTEGER, REAL, LOGICAL, or CHARACTER[*len].

a is either a single letter or a range of single letters in
 alphabetical order. A range is indicated by the first and last
 letter of the range, separated by a minus sign. This is equivalent
 to writing every character within the range separately.

 -22-

 Fortran 77

 WARNING! The IMPLICIT statement will cause all identifiers which
 are not explicitly declared to be implicitly declared as specified
 in the IMPLICIT statement. This includes built-in functions such
 as SQRT, ATAN, etc. The user is advised to take care when using
 built-in functions in programs which make use of the IMPLICIT
 statement.

len is the [optional] length specification for entities of type
 CHARACTER. If 'len' is not specified, the length is one.

The IMPLICIT statement affects all variable declarations which do not
explicitly declare a type for a given item. An IMPLICIT statement only
applies to the program unit which contains it.

Examples:
 IMPLICIT INTEGER(a-z)
 IMPLICIT CHARACTER*4 (c, f-i, z)

EXTERNAL Statement
The EXTERNAL statement is used to identify a symbolic name as the name
of an external procedure or dummy procedure, and to permit such a name
as an argument. The form of an EXTERNAL statement is:
 EXTERNAL proc [, proc]...

 -23-

Fortran 77

 -24-

 Fortran 77

VIII. DATA STATEMENT

The DATA statement is used to specify initial values for variables at
compilation time. A DATA statement is not executable and must appear
after any specification statements and before any executable statements
in a given program unit. The form of a DATA statement is:
 DATA nlist /clist/ [[,] nlist /clist/]...
where:

nlist is a list of variable names, array names, and array element names.

clist is a list of the form:
 a [, a]...
 where "a" is one of the forms:
 c
 r*c
 c is a constant
 r is an unsigned integer constant. The "r*c' form is equivalent
 to "r" successive appearances of the constant "c".

Names of parameters, functions and entities in COMMON must not be
specified in the variable list.

There must be the same number of items specified in the data list
"clist" as in the variable list "nlist". There is a one-to-one
correspondence between elements of "nlist" and elements of the "clist".
Specifying the name of an array in the list is equivalent to specifying
each element of the array, with the first dimension being varied most
rapidly. Also, if any elements of an array are specified. they must be
given in ascending order. That is, the array element A(10) must not
appear before the array element A(1).

The type of the element in the nlist and the corresponding element in
the clist must be the same.

A variable or array element must not appear more than once in a DATA
statement in a given program unit.

Character constants need not have the same length as the element they
are meant to initialize. In this case, they will be padded or truncated
on the right as needed.

Examples:
 INTEGER a(10)
 DATA a/1, 2, 8*0/

 CHARACTER*10 lines(5)
 DATA lines(1)/'line 1'/, line(5)/'*Full line'/

 -25-

Fortran 77

 -26-

 Fortran 77

IX. ASSIGNMENT STATEMENTS

There are four distinct forms of assignment in FORTRAN:
 Arithmetic Assignment
 Logical Assignment
 Statement label Assignment
 Character Assignment

Arithmetic Assignment
This statement assigns the value of an arithmetic expression to a given
variable. The format of this statement is:
 <variable> = <expression>
This statement is executed by first evaluating the expression and then
assigning the result value to the variable which appears to the left of
the "-". If the expression and variable have different types, the
expression is automatically converted to the same type as the variable
before the assignment takes place. The following table outlines legal
combinations of variables and expressions and the conversions which take
place. The rows in the table correspond to the type of the <variable>
in the assignment and the columns correspond to the <expression>.

AssignFLOAT(e)Real
IFIX(e)AssignInteger
RealInteger

Any other combination of types is illegal.

Logical Assignment
This statement assigns the value of a logical expression to a given
variable. It has the same syntax as the arithmetic assignment, except
that the variable must be of type logical.

Character Assignment
This statement assigns the value of a character expression (character
variable or literal string) to a given variable. The syntax of the
statement is the same as the arithmetic assignment statement. If the
variable and the expression have the same length, then this statement
simply assigns the expression to the variable. If the variable is
shorter than the given expression, the expression is truncated on the
right before assignment. That is, only the leftmost "w" characters from
the expression are copied into a variable which is of length "w". If
the variable is longer than the expression, the expression will be
padded on the right with spaces to the length of the variable.

ASSIGN Statement and GOTOs:
The fourth form of assignment is the operation of assigning a label to a
variable. This variable may then be used in a GOTO statement. This
statement has the form:
 ASSIGN <label> TO <variable>
This <variable> may later be used in a GOTO statement, as follows:
 GOTO <variable>
The meaning of this statement is to "GOTO" the <label> which was
specified in the most recently executed "ASSIGN" statement involving the
given variable. Notice that this assignment is only valid within the
current SUBROUTINE or FUNCTION and the variable should not be a

 -27-

Fortran 77

parameter or passed to any other routine.

 -28-

 Fortran 77

X. CONTROL STATEMENTS

Control statements are used to control the execution of a program.
There are sixteen control statements, as follows:
 Unconditional GO TO
 Computed GO TO
 Assigned GO TO
 Arithmetic IF
 Logical IF
 Block IF
 ELSE IF
 ELSE
 END IF
 DO
 CONTINUE
 STOP
 PAUSE
 END
 CALL
 RETURN
The CALL and RETURN statements are described in chapter XIV. The
Assigned GOTO statement is found in chapter IX.

Unconditional GO TO
the form of an unconditional GOTO statnent is:
 GO TO s
where "s" is the statement label of an executable statement which
appears in the same program unit as this statement. Execution of the
unconditional GOTO statement causes the statement whose label is "s" to
become the next statement to be executed. The keywords "GO TO" may be
written as a single word, "GOTO".

Computed GO TO
The form of a computed GO TO statement is:
 GO TO (s [,' s]...) [,] i
where:

i is an Integer expression.

5 is the statement label of an executable statement within the same
 program unit as the computed GO TO statement. The sare statement
 label may appear more than once in the same computed GO TO
 statement.
Execution of a computed GO TO statement causes the expression "i" to be
evaluated. If "i" has a value between 1 and "n", where "n" is the
number of statement labels "s" appearing in the statement, then control
is passed to the "i"'th statement label in the list. If "i" is outside
this range, then control continues with the statement following the
computed GO TO statement.

 -29-

Fortran 77

Arithmetic IF
The form of an arithmetic IF statement is:
 IF (e) s1, s2, s3
where:

e is an integer or real expression

s1, s2, and s3 are each the statement label of a statement within the
 same program unit as the IF statement. The same statement label
 may appear more than once in the same IF statement.

Execution of an arithmetic IF statement causes the expression 'e" to be
evaluated and if the result is less than 0, control is passed to the
statement labeled "sl". If the result is "0", execution continues with
the statement labeled "s2". If the result is greater than 0, control
continues at "s3".

Logical IF
The form of a logical IF statement is:
 IF (e) st
where:

e is a logical expression

st is any executable statement except DO, block IF, ELSE IF, ELSE,
 END IF, END, or another logical IF statement.
Execution of a logical IF statement causes the expression "e" to be
evaluated and if the result is ".TRUE.", the statement "st" is executed.
If the result is ".FALSE.", execution continues with the following
statement.

Block IF, ELSE IF, ELSE, and END IF
These statements are always used together to form an IF-block. The
general form of the IF-block is:
 IF(e) THEN
 <statement> ...
 [ELSE
 <statement> ...
]
 END IF
The block IF statement and END IF statements must always appear in
matched pairs, with an optional ELSE statement between them. Execution
of this statement causes the logical expression "e" to be evaluated and
if it has the value ".TRUE.", the statements following the block IF
statement are executed, up to, but not including the ELSE statement if
present. All statements between the ELSE and the END IF statement are
skipped if the expression is ".TRUE.". If the expression has the value
".FALSE.", then execution continues with the first statement following
the ELSE statement if present, otherwise execution continues with the
statement following the END IF statement.

 -30-

 Fortran 77

If the last statement executed within a IF-block statement does not
cause control to continue outside the block IF statement, then control
automatically continues witli the statment which follows the END IF
statement. Transfer of control into an IF-block from outside the
IF-block is prohibited.

IF-block statements may be nested if desired. Also the construct:
 IF(e) THEN
 <statement> ...
 ELSE
 IF(e) THEN
 <statement> ...
 END IF
 END IF
may be abreviated as:
 IF(e) THEN
 <statement> ...
 ELSE IF (e) THEN
 <statememt> ...
 END IF
The keywords "ELSE IF' and "END IF" may be written as "ELSEIF" and
"ENDIF" respectively if desired.

DO
A DO statement is used to specify a loop. called a DO-loop. The form of
a DO statement is:
 DO s [,] i = e1, e2 [, e3]
where

s is the statement label of an executable statement. This statement
 is known as the terminal statement of the DO-loop and must follow
 the DO statement in the sequence of statements within the same
 program unit as the DO statement.

i is an integer variable, known as the DO-variable.

e1, e2, and e3 are integer expressions.
The terminal statement of a DO-loop must not be an unconditional GO TO,
assigned GO TO, arithmetic IF, logical IF, block IF, ELSE IF, ELSE, END
IF, RETURN, STOP, END, or DO statement. Execution of a DO statement
causes the expressions e1, e2 and e3 to be evaluated. The value of e1
is then assigned to the variable "i". The value of "i" is then compared
to the value of "e2". If "i" is less than or equal to "e2" and "e3" is
positive then the statements which follow the DO statement up through
and including the terminal statement are executed. The value of "i" is
then incremented by "e3" and control continues with the test previously
described. Thus, the execution of a DO-loop will cause the statements
between the DO statement and the terminal statement to be executed for
all integer values of "i" between "e1" and "e2" in steps of "e3". If
"e3" is not specified, a default value of "+1" is implied. If the value
of "e3" is negative, the DO-loop continues execution as long as the
value of "i" is greater than or equal to "e2". Thus the execution of a
DO-loop may be considered similar to the following schemata:

 -31-

Fortran 77

 i = e1
 11 if((e3 .GE. 0) .AND. (i .GT. e2)) GOTO 12
 if((e3 .LT. 0) .AND. (i .LT. e2)) GOTO 12
 <statements within the DO-loop, including terminal statement>
 i = i + e3
 GOTO 11
 12 ---
Transfer of control out of the DO-loop is acceptable, but transfer of
control into a DO-loop must never be done. Also, the DO-loop and any
IF-blocks must not overlap in any manner. If a DO statement appears
within another DO-loop, the range of the DO-loop specified by that DO
statement must be completely within the range of the outer DO-loop.
Nested GO-loops may share a common terminal statement.

CONTINUE
The form of a CONTINUE statement is:
 CONTINUE
Execution of a CONTINUE statement has no effect unless the statement is
the terminal statement of a DO-loop.

STOP
The form of a STOP statement is:
 STOP [n]
where the constant "n" is an integer or a character string. Execution
of a STOP statement causes the string "n" or the value "n" to be
displayed at the user's console and the program terminated.

PAUSE
The form of the PAUSE statement is:
 PAUSE En]
where "n" is an integer constant or a character string. Execution of a
PAUSE statement causes the given value "n" to be displayed on the user's
terninal and the program suspends execution until the user enters a
carriage return on the terminal. Execution then continues with the
statement following the PAUSE statement.

END
The END statement indicates the end of a program unit. The END
statement must be present for each program unit and has the effect, if
executed, of a STOP statement within the main program, or a RETURN
statement within a FUNCTION or SUBROUTINE. The form of the END
statement is:
 END
The last line of every program unit must be an END statement.

 -32-

 Fortran 77

XI. INPUT/OUTPUT STATEMENTS

There are several Input/Output statements in FORTRAN. These provide the
user with mechanisms to read and write formatted or free format data.
Also, there is a mechanism for doing "direct" access to a data file in a
more or less random fashion. Each of these alternatives will be
explored in the following sections.

List-directed Input/Output
These statements allow the FORTRAN programmer to perform sequential
input or output from a file of character data. These data are then
interpreted (on input) to represent numbers or characters as necessary.
On output, the data are converted to a form readable by humans as well
as being usable by other programs. The general form of these statements
is:
 READ *, <io-list>
 PRINT *, <io-list>
An <io-list> is any non-empty list of <io-element>s, separated by
commas. An <io-element> is a variable name or expression, including
character strings, or an implied do-loop construct described later. An
example would be:
 CHARACTER*6 name
 INTEGER age
 READ *, name. age
This statement would cause the program to read a 6 character string from
the standard input followed by an integer value representing an age.
The rules for the form of this input data follows later.

In the above example, simple variables were being read into. The READ
statement requires that all the <io-element>s be variable names or
variable expressions, such as array element references. Complete arrays
may also be used as an <io-element>. In this case, the entire array
will be read into, with the first dimension being varied most rapidly.
If the user waited to read more than one value into an array, but did
not want to read every element in the array, he might choose to use the
Implied do-loop construction given below:
 (exp-1, exp-2, ..., exp-n, i=1,n)
The meaning of this expression is to evaluate "exp-1" for the value of
the variable '1" equal to 1, then evaluate "exp-2" with "i" equal to 1,
etc. Then evaluate "exp-1" with 'i" equal to 2, and so on.

An example of using an implied do-loop construct would be:
 INTEGER a(100)
 READ *, (a(i), i=1,10)
This statement would read 10 integer values into the first 10 elements
of the array "a".

 -33-

Fortran 77

The READ statement for list-directed input interprets the input data
differently based on the type of item being read. The rules for this
interpretation are as follows:

Character
 Character strings must be enclosed in single quotes, the "'"
 character. Any characters precedeing the opening quote are
 ignored. The character variable is then filled with characters
 until full or the closing quote character is found. If the closing
 quote appears before the variable is full, it will be padded on the
 right with spaces until full. If the variable becomes full before
 the closing quote appears, all characters past the point at which
 the variable became full up to the closing quote are ignored. The
 closing quote character must always be followed by some termination
 character, such as a space or a carriage return. This terminator
 will also be consumed so that the next element to be read will
 start with the second character which follows the closing quote.
 If it is desired to include the quote character in thh string being
 read, it is necessary to place two quote characters continuously in
 the string, just like in a program text. These two characters will
 then be read as a single quote character. Carriage returns are
 totally ignored during the reading of character data.

Integer
 An integer value is represented by any number of leading spaces and
 carriage returns, including zero, followed by an optional sign
 character ('-' or '+') followed by a string of digits '0' through
 '9'. This string is interpreted to be a decimal number with the
 sign indicated, no sign meaning a positive value.

Logical
 A logical value is represented by any number of leading spaces or
 carriage returns, followed by the character "T" or "t" indicating
 .true., or "F" or "f " indicating .false. This value may be
 preceded by a period, ".", character and followed by a string of
 characters up to a separator which must be a space or a carriage
 return. Thus the string ".TRUE." is an acceptable input for a
 logical input value.

Real
 A Real value is represented by an optional sign, followed by a
 string of digits, optionally containing a decimal point, optionally
 followed by an exponent of the form 'e' followed by an optionally
 signed integer. On input, the value may be preceded by any number
 of spaces or carriage return combinations and must be terminated by
 a space or carriage return. On output, the value will be formatted
 in the most convenient form, using decimal notation when possible
 and scientific notation when necessary.

 -34-

 Fortran 77

Note that all values read must be terminated, either by a space or by a
carriage return. After the last item in the <io-list> has been read,
the rest of that record in the input file is discarded and the next READ
statement will begin at the start of the next record in the file.

The PRINT statement performs the inverse of the READ statement,
following much the same rules, except that character strings are not
delimited by quote characters. For example.
 INTEGER age
 age = 96
 PRINT *. 'The old man is ', age, ' years old.'
would print the line:
 The old man is 96 years old.
on the standard output file. Note that the integer value "96" was
printed with a number of leading spaces. This is because PRINT will
always use the same number of space s to print an integer value,
regardless of its magnitude. Logical and Real values also have specific
field widths which are always used. Character strings only print the
minimum number of characters required to print the string.

Formatted Input/Output:
The list-directed statements described above are fine for simple things,
but they have their drawbacks. One of the most important of these is
the fact that the user has little control over the format of the
resulting output when using the PRINT statement. This limitation can be
overcome by using FORMATted operations. The general form of these
statements is:
 READ f, <io-list>
 PRINT f, <io-list>
 READ(u, f [, END=n] C, ERR-n]) <io-list>
 WRITE(u, f [, ERR-n]) [<io-list>]
where:

f Stands for a FORMAT number. This must be the label of a FORMAT
 statement or the name of a character string which contains a FORMAT
 string. The details of FORMAT are given in the following chapter.

u Stands for a unit number. This must be an integer expression or
 the special character "*" or a character variable name. In the
 case that this is the character "*". the unit is a predefined unit,
 normally used for the desired operation. E.g. "*" in a READ
 statement is the same as specifying the unit number 5, the standard
 input. "*" in a WRITE statement stands for the unit number 6, the
 standard output file. If the unit is specified as a character
 variable, no actual Input/Output will take place, but the system
 will treat the given character variable as the source for input on
 a READ statement and the destination for output from a WRITE
 statement. This allows FORMATted conversions using only
 memory-to-memory operations. This mechanism replaces the old
 "ENCODE"/"DECODE" routines of FORTRAN-66.

END-N When this option is present in a READ statement, "n' must be a
 statement label. If the end of file is encountered on the given
 unit before all <io-element>s have been read, control is
 transferred to the given label. The values of all the

 -35-

Fortran 77

 <io-element>s in the list are undefined if this action takes place.
 If this option is not present and the end of file is encountered,
 the program will be aborted.

ERR=n This option allows the program to regain control if any errors
 occur during the processing of the I/O statement. Again, all
 values in the <io-list> are undefined on input if this occurs. If
 this option is not present, the program will be aborted.

These statements work much the same as the list-directed statements
except that the way the character data is interpreted/produced depends
on the FORMAT statement provided. The details of FORMAT specifications
may be found in the following chapter. As these statements are being
processed, the FORMAT specification is scanned and there must be a
one-to-one correspondence between <io-element>s and FORMAT items. The
FORMAT item then defines how the transfer to/from the <io-element> is to
take place. An example of this is:
 WRITE(*, 100)'Hi there', 90
 100 FORMAT(//, A, ', today is Jan 1, 19', I2, '.')
would print the line:
 Hi there, today is Jan 1, 1990.
preceded by two blank lines. Refer to the following chapter for the
details of FORMAT specifications.

OPEN statement:
The OPEN statement allows the FORTRAN programmer to create an
association between a unit number used in Input/Output operations and an
external file. This association must be established before any
operations may be performed on any unit, except the standard units. The
association for these standard units has already been defined before the
program begins execution, as follows:
 0 - Standard Error (user's terminal)
 5 - Standard Input
 6 - Standard Output
The definition of what "Standard Input/Output" means depends upon the
operating system. For UniFLEX, the Standard Input and Output files are
defined using the shell. Under FLEX, all these files are associated
with the user's terminal. All other files must be "opened" explicitly
before use. The general form of the OPEN statement is:
 OPEN(u [, FILE='name'])
Execution of this statement will open unit number "u', associating that
unit with the file "'name"'. If the "FILE=" parameter is not given, a
default name will be used. This default name is "fortnn.dat", where
"nn" is the unit number being opened. If the unit is open when the OPEN
statement is executed, it will be closed and then processing continues
as normal

Direct-Access Input/Output:
The READ and WRITE statements may also be used to transfer varies
between memory and files without conversion to/from external form. This
is known as direct access Input/Output. The general mechanism is much
the same as before, except that as values are transferred, they are not
interpreted in any fashion. Thus the user may write a Real number to a
file and actually get the 8 bytes which are the value written to the
file, not an approximate value which has been formatted so that humans

 -36-

 Fortran 77

can read it. To put it another way, this mechanism allows the FORTRAN
programmer to perform I/O operations using the "natural" form of values,
not their "human" counterparts. This can be very useful for keeping
files of data which are to be manipulated. The values kept on the file
will always be as accurate as possible, since no conversions are taking
place.

The method by which the FORTRAN programmer performs this kind of
operation is simple - just leave out the FORMAT specification in the I/O
statement. I.e.
 READ(u [, END=nn][, ERR=nn])<io-list>
 WRITE(u [,ERR=nn])<io-list>
Units which are to be accessed directly by this mechanism must be opened
as "direct access" files. This is accomplished through the use of the
OPEN statement, as follows:
 OPEN(u [, FILE='name'], ACCESS='direct', RECL=nn)
The function of this statement is to identify unit ":j" as a direct
access file, optionally named by the user, with a record length of "nn".
Notice that for direct access files, a record length must be present.
The record length is used by the system and all operations on this file
will use a multiple of this length bytes.

Direct access files may be accessed sequentially, as above, or specific
records of the file may be accessed directly using the form of READ and
WRITE given below:
 READ(u, REC=nn END=m][, ERR=m])<io-list>
 WRITE(u, REC=nn ERR='m')<io-list>
The effect of these statements is to position to record number "nn"
before performing the given operation. Records are numbered 0, 1, ...
The READ statement would then read record "nn" and the WRITE statement
would then write to record "nn". If the <io-list> requires more than
one record, multiple records will be transferred, but always a multiple
of the record length bytes will be transferred.

Auxiliary Input/Output Statements:
There are three other statements associated with Input/Output
operations. These are:
 REWIND u
 BACKSPACE u
 ENDFILE u
The purpose of each of these statements will be described below.

The REWIND statement repositions the given unit at the beginning of the
data. The file may then be read or written, using the READ and WRITE
statements.

The BACKSPACE statement repositions the file so that the next operation
begins with the preceding record. This operation is only available for
direct access files. If the file is already positioned at the beginning
of the data, the BACKSPACE statement has no effect.

 -37-

 Fortran 77

The ENDFILE statement is accepted by the Fortran system, but performs no
function. This statement normally indicates that an "End of File" mark
is to be placed at the current position in the file.

 -38-

 Fortran 77

XII. FORMAT SPECIFICATION

The FORMAT string is used during FORMATted Input/Output, as described in
the last chapter. This chapter outlines the rules for formation of
FORMAT strings and how the specific FORMAT items are interpreted.

The general form of a FORMAT string is:
 (<format-item-list>)
where <format-item-list> is a list of one or store <format-item>s,
separated by commas. Each <format-item> may be any of the following:
 nA[w]
 nlw
 nfw.d
 new.d
 nlw
 nX
 /
 $
 BN
 BZ
 kP
 nhaaaaaaaa (n characters)
 'aaaaaaaa'
 n(<format-item-list>)
In the above list, "n" indicates a positive non-signed integer or an
empty string which indicates how many times the following FORMAT item is
to be used. For example, the FORMAT item "5I3" is the same as the
FORMAT items "I3,I3,I3,I3,I3". The FORMAT code in a FORMAT item may be
written in either upper or lower case. That is the item "i3" is
equivalent to "I3". The meaning of each of these FORMAT items is given
below:

A[wl
 This FORMAT item is used to transfer character (alphanumeric) data.
 If the "w" value is present, it must be a non-signed integer value
 and exactly that many characters will be transferred. If the "w"
 value is not present, only the number of characters necessary will
 be transferred.

 On input, if "w" is not present, enough characters will be
 transferred to fill the given variable. If "w" is present and "w"
 is greater than the size of the character variable, the variable
 will be filled and the regaining characters discarded. If "w" is
 present and is less than the size of the character variable, "w"
 characters will be transferred with the variable being padded on
 the right with spaces.

 On output, if "w" is not present, enough characters will be
 transferred to output the entire expression. If "w" is present and
 is greater than the size of the expression, enough spaces will be
 output preceding the value so that the entire field is "w"
 characters. If "w" is present and less than the expression size,
 only the left-most "w" characters from the expression will be

 -39-

Fortran 77

 transferred.

Iw
 This FORMAT item specifies an integer value, Occupying exactly "w"
 characters. These characters will be an optional sign ("-"),
 followed by a string of digits '0' to '9' which represent the
 value. The field may contain any number of leading spaces
 necessary to complete the total "w" characters. On Input, if there
 are any trailing spaces, i.e. spaces which occur after the last
 digit character, but within the "w" characters, these are
 interpreted according to the current blank interpretation mode.
 See the BN and BZ FORMAT item description for details.

Lw
 This FORMAT item indicates that a Logical value should be
 interpreted using "w" characters. This string of characters may
 contain leading spaces, an optional period character, followed by
 the character "T" or "t" indicating .true. or "F" or "f"
 indicating .false.. On output, the "T" or "F" will be right
 justified in the field with "w-1" leading spaces.

Fw.d
 This FORMAT item represents a floating point value which occupies
 "w" total characters, exactly "d" of them being to the right of the
 decimal point. The value may be preceded by zero or more spaces,
 followed by an optional sign, followed by a string of digits,
 followed by a decimal point, ".", followed by "d' digits.

Ew.d
 This FORMAT item indicates that a value is to be formatted using
 scientific notation. On input, the FORMAT item is exactly the same
 as the "Fw.d" item. On output, this item indicates that "w"
 characters should be used to form the field, with cxactly "d"
 digits in the mantissa. The remaining character positions are used
 for the sign and exponent values. Because of this, "w" should be
 at least "d"+6.

X
 This FORMAT item indicates that the next character position is to
 be ignored. On input, this means that the next input character is
 simply skipped. On output, this item indicates that a blank
 character should be inserted at the current character position.

/
 This FORMAT item indicates that the next operation should continue
 on the next record. On input, this means to discard the remainder
 of the current input record and continue processing with the start
 of the next input record. On output, the next operation will begin
 on a new line.

'aaaa'
 This FORMAT item is only allowed in an output FORMAT string and
 indicates that the character string within the quotes should be
 output at the current position in the outfit record. This is
 useful for placing text information within other formatted data

 -40-

 Fortran 77

 items.

nHaaaa
 This FORMAT item is equivalent to 'aaaa', where there must be
 exactly "n" characters in the string which follow the "H". Care
 must be used with this form of "Hollerith" output because if the
 count is not correct, disasterous things will occur. The 'aaaa'
 FORMAT item Is much recommended.

BZ and BN
 These FORMAT items control how blanks are interpreted during input
 using I, F and E FORMAT items. If the "Blank mode" is "BZ", all
 trailing blanks are treated as if they were zeroes. If the "Blank
 mode" is "BN", trailing blanks are ignored. "BZ" is the default
 mode.

kP
 This FORMAT item controls the scaling of input and output values
 using the "F" or "E" FORMAT items. "k" must be an optionally
 signed integer value. On input, if there is no exponent in the
 field, the input value is scaled (multiplied) by a value of 10**k.
 On output, the value is first scaled (divided) by a value of 10**k.
 The default value for "k" is 0.

$ This FORMAT item indicates that when the current output operation
 completes, the next operation should continue on the same line.
 This is useful for interactive input/output from a terminal when a
 response is desired on the same line as a prompt. E.g.
 CHARACTER*40 name
 WRITE(*, 100)
 100 FORMAT('Enter your name: ', $)
 READ(*, 101) name
 101 FORMAT(A40)
 would produce the following exchange at the terminal (user input
 underlined).
 Enter your name: :ul San Jones

n(<format-item-list>)
 This FORMAT item indicates that the entire <format-item-list>
 within the parentheses should be used "n' times. This is a more
 general form of "nZ" described above for any arbitrary FORMAT item.

When processing an Input/Output statement, there is a correspondence
between FORMAT items and elements in the <io-element-list>. As the
statement is processed, a new <io-element> is determined. This item is
then transferred either from a unit to memory during a READ statement or
to a unit during a WRITE operation. A corresponding FORMAT item must be
found for this element. This is done by scanning, from left to right,
until a FORMAT item is found which can be used. If any of the items
XPH/$' are encountered, they are processed but do not correspond to any
data element. The FORMAT item is then used to direct the Input/Output
transfer, as described above. When the entire <io-element-list> has
been processed, the rest of the current record is discarded on input and
on output a new record will be started.

 -41-

Fortran 77

If the FORMAT string is exhausted before all transfers take place, it
will be reused as follows: The FORMAT will be restarted at the left
parenthesis which corresponds to the rightmost right parenthesis before
the parenthesis which closes the FORMAT list, or the leftmost
parenthesis if there is none. The FORMAT is restarted after going to a
new record, as if a "/" FORMAT item had been executed just before the
restart point. An example may make this more clear. The statement:
 WRITE(*, 100)(i, i=1,10)
 100 FORMAT('The first 10 integers are',/,(3i5))
would result in the lines:
 The first 10 integers are
 1 2 3
 4 5 6
 7 8 9
 10

FORMAT Statement
The FORMAT statement is used to give a FORMAT specification a label so
that it may be used by the Input/Output statements of the previous
chapter. As seen in the examples above, the form of this statement is:
 <label> FORMAT<format-string>
FORMAT statements must have a label which is unique within the program
unit. This label is then used to reference the FORMAT string.

 -42-

 Fortran 77

XIII. MAIN PROGRAM

Every complete FORTRAN program must contain exactly one "main" routine.
This routine is indicated by not being a FUNCTION or SUBROUTINE
definition. The general form of the "main" program is then:
 [PROGRAM name [(argument [, argument]...)]]
 <declaration statements>
 <executable statements>
 END

If a PROGRAM statement is present, it must contain a name to be given to
the program. This name is effectively ignored. If any arguments are
present, they should conform to the argument mechanism of the operating
system. Examples will be given below for the various systems. These
arguments provide a mechanism for the user to communicate with the
program when it is envoked.

UniFLEX Example:
Consider the following program:
 PROGRAM prog1(count, arg0, arg1, arg2)
 INTEGER count
 CHARACTER*32 arg0, arg1, arg2
 CHARACTER*32 file1, file2
 IF(count .NE. 3)STOP 'Wrong number of arguments!'
C Arguments must be copied before use
 file1 = arg1
 file2 = arg2
 call copy(file1, file2, ier)

In this example, the variables "arg0", "arg1" and "arg2" correspond to
the exec arguments used when this program was initiated. If the program
was run via the shell, these arguments correspond to the comand line
arguments. In this case, "arg0" corresponds to the program name , with
"arg1" and "arg2" being additional parameters. This program would be
stalled via a command such as:
 ++ prog fnl fn2

FLEX Example:

Under the FLEX operating system, a single argument is available to the
program. This argument, which is an array of 80 characters, is a
blank-filled image of the command line which invoked the program,
starting with the character following the program name. Thus a program
running under FLEX might look something like:
 PROGRAM. main(cmd)
 CHARACTER*1 cmd(80)
 ...
 END

 -43-

Fortran 77

Any statement may be written in a "main" program except the "RETURN"
statement.

 -44-

 Fortran 77

XIV. FUNCTIONS AND SUBROUTINES

SUBROUTINES and FUNCTIONS are the FORTRAN mechanism for breaking
programs into small, easily used and understood modules. These routines
contain pieces of the program which may be "called" from some other part
of the program to perform some particular task. They are particularly
useful when the same operation must be performed repeatedly, perhaps by
different portions of the program. Routines cone in two varieties,
SUBROUTINEs which simply perform some operations and FUNCTIONs which
perform similar operations but also explicitly return a value.

Before any routine can be used, it must be described through the
SUBROUTINE or FUNCTION declaration. The general form of these
declarations is:
 SUBROUTINE name [(parm1 [, parm2]...)]
 <declaration statements>
 <executable statements>
 END
or
 [<type>] FUNCTION name(parm1 [, parm2]...)
 <declaration statements>
 <executable statements>
 END

This declaration serves many purposes:

1. It gives the routine a name. This is the name which must be used to
 access the routine from some other point in the program. A given
 routine must not, either directly or indirectly, call itself.

2. It provides the declaration of the parameters to the routine. These
 parameters are the mechanism by which this routine communicates with
 the routine which called it. Notice that FUNCTIONs must have at
 least one parameter but SUBROUTINEs may have zero. Parameters are
 discussed in more detail later.

3. It outlines the statements which are to be executed when the routine
 is invoked (called).

SUBROUTINEs and FUNCTIONs must be "called" for the statements within
them to be executed. This is accomplished by using the "CALL" statement
for SUBROUTINEs and by using the FUNCTION identifier in an expression.
The form of these are:
 CALL sub [(arg1 [, arg2]...)]
or
 var = fun(arg1 [, arg2]...)
The CALL statement works like this: When a CALL statement is executed,
the expressions which represent the arguments, "arg1" etc., are
evaluated. Then control is passed to the routine named "sub". In this
routine, a correspondence between the arguments which were just
evaluated and the parameters listed on the SUBROUTINE statement is
established. Execution then continues with the first executable
statement within the routine. When the last statement of the routine

 -45-

Fortran 77

has been executed and the next statement to be executed would be the
"END" statement, control returns to the statement following the original
CALL statement. Control may also be returned by using the "RETURN"
statement anywhere within the routine. A FUNCTION activation works much
the same way except that at some point in the FUNCTION itself, a value
must be assigned to the FUNCTION identifier. When the FUNCTION returns
control, this value is used in the place of the FUNCTION call in the
calling expression.

Note that FUNCTIONs return a value but SUBROUTINEs do not. Some
examples should make this mechanism more clear.

Consider the declaration:
 SUBROUTINE add(x, y, sum)
 INTEGER x, y, sum
 sum = x + y
 RETURN
 END
The purpose of this SUBROUTINE is to add the value of the first two
parameters and return the value in the third argument. This routine
might be called using the following statement:
 CALL add(1, 2, i)
where "i" is a variable of type INTEGER. When the CALL statement is
encountered, the values of the arguments are computed. In this case,
this is easy since they are constants, but they could be arbitrarily
complex expressions. Then the SUBROUTINE is entered, establishing the
correspondence between arguments and parameters. In this case, the
parameter "x" stands for the value "1" and the parameter "y" stands for
the value "2". The parameter "sum" stands for the variable "i" in the
calling program. This means that anywhere inside the SUBROUTINE that
"sum" is referenced, the routine is really referencing "i" from the
calling routine. This is especially important when we consider what the
statement
 sum = x + y
really means. The assignment will actually change the value of "i" in
the routine where the CALL statement was that called "add"! Notice that
since a SUBROUTINE can change the value of a variable in the calling
routine, care must be taken to insure that arguments which correspond to
parameters which are going to be modified must actually be variables and
not expressions. This means that the statement:
 CALL add(l, 2, 7)
doesn't make any sense because "add" will try to store the value of the
sum in the constant 7. Since there is no way to enforce that "add" is
called with a variable as the third argument, the result of such a call
is undefined.

Similar results may be obtained by using a FUNCTION declaration if it is
desired to return exactly one result as in the above example. The
program segment below shows this:
 INTEGER FUNCTION add(x, y)
 INTEGER x, y
 add = x + y
 RETURN
 END
This routine would be called by in same sort of INTEGER expression, e.g.

 -46-

 Fortran 77

 i = add(1, 2)
again, assuming that "i" was an INTEGER variable. The one problem with
this approach is that implicitly the type of the external function "add"
would be REAL, unless the IMPLICIT statement had been used to change
this. There is a way to indicate that "add" is really an external
FUNCTION and that it is of type INTEGER. This is accomplished by the
declaration
 EXTERNAL add
 INTEGER add
appearing somewhere in the calling program. Note that this was not
necessary for "add" when it was declared as a SUBROUTINE, since its type
was not important. The EXTERNAL statement indicates that "add" is
really a FUNCTION, not an array which is accessed using the same syntax,
and the INTEGER statement indicates its type. These two statements may
occur in either order, but must be present if the implicit type of a
function is not correct.

When the statement containing "add(1, 2)" is executed, "add" is
recognized as an external function and the process for calling external
routines is started. The arguments are evaluated and the routine is
called, just like a SUBROUTINE. The only difference is that some place
in the FUNCTION body, there must be an assignment to the FUNCTION name
itself. This value then is used at the point of call, replacing the
function call by its value. Thus writing "i = add(1, 2)" is equivalent
(at runtime) to the statement "i = 3". Of course, the FUNCTION body can
do much more than simply return a value as in this example, but it must
do at least this much. FUNCTIONs cannot be called by any other
mechanism than by using them in an expression. In particular, they may
not be called using the CALL statement.

Arguments to a FUNCTION or SUBROUTINE may be:
 Arithmetic expression
 Variable name
 Array element reference
 Array name
In the first three cases, there must be a simple variable parameter in
the called routine which corresponds to the argument. In the case of an
array name, the corresponding parameter in the SUBROUTINE or FUNCTION
must be an array, with the same number of dimensions. Other FORTRAN
implementations have allowed, and in some cases encouraged, the number
of dimensions to be different, but this implementation holds that they
must be the same. The bounds on the array need not be the same, as the
bounds that were given where the variable was originally declared are
used. E.g.
 DIMENSION X(10, 50)
 ...
 CALL sub(X)
 ...
must have declarations similar to:
 SUBROUTINE sub(parm)
 DIMENSION parm(10, 50)
or
 DIMENSION parm(1, 1)
In this case, any reference to "parm" within "sub" really stands for a
reference to "x" in the calling routine.

 -47-

Fortran 77

FORTRAN allows external functions to be called without being explicitly
declared, by leaving out the EXTERNAL statment discussed above. Thus
care must be taken when writing a FORTRAN program, as mispellings will
probably end up being interpreted as external function references. E.g.
 INTEGER array(10, 10)
 i = arry(j, k)
In this example, the programmer has mistyped the name of the array,
typing "arry" instead of "array". FORTRAN has no was of knowing that
this is really a mistake and will assume that "arry" is really an
external function of type REAL. This will only become evident when the
program is linked and "_arry" comes up as an unsatisfied external
reference.

 -48-

 Fortran 77

A. COMPILER ERROR MESSAGES

This section describes the possible error messages which can arise from
the compilation of a FORTRAN program. Error messages which come from
execution of a program are discussed in the following chapter.

The Fortran compiler attempts to find and inform the user of all illegal
or ill-defined constructs in the source program. Whenever an error is
found, the source line which contains the error, along with a
description of the error, will be printed. All error messages are given
as text, not as some encripted number which must be looked up. For this
reason, some error messages may be used for more than one error,
whenever the errors are similar enough to warrant such overloading.

All errors detected by the compiler are considered fatal. If any errors
are found during compilation, the assembly and linking loader phases are
omitted. Some errors may come from the linking loader and the user is
referred to the manual for that product for more information.

The following is a list of possible error messages and a description of
their causes.

Number syntax
 The input text contains a number which has an illegal digit or which
 has a value larger than 32767 and does not contain a decimal point
 or an exponent.

String syntax
 A character string was encountered which contained more than 80
 characters or which did not terminate properly. This will occur if
 the end of record occurs before the closing quote mark (') is found.

Unrecognizable statement
 The current statement could not be identified as a legal FORTRAN
 statement.

Too many continuation lines
 The current input record contains more than 10 continued lines.

Illegal label
 A value was found in the label field (cols 1-5) which was not
 numeric or had a value of 0.

Label on continuation line
 An input line was encountered which was non-blank in column 6 and
 which had something in the label field (cols 1-5).

Bad logical operator
 An input symbol was encountered which began with a period '.'
 character. This symbol was not a legal LOGICAL operator or
 constant, which is the only legal use of the period outside of a
 quoted string.

 -49-

Fortran 77

Expecting XXX
 This is not exactly a possible error message. In this case, the
 "XXX" is replaced by some item, which is spelled out. The meaning
 of this message is that the particular item could not be located on
 the current input line, but that one was expected. E.g. Expecting
 ")" normally indicates t hat a right parenthesis is missing on the
 current line.

Expression syntax
 This error will occur whenever a poorly formed expression is
 encountered. Refer to chapter VI for help.

XXX statement syntax
 Again, this is not an exact error message. The "XXX' will be
 replaced by the name of a particular type of statement, such as
 GOTO. This message indicates that the current statement is not
 syntactically correct, which may be caused by any number of reasons.
 E.g. "GOTO syntax error" indicates that the current line is a GOTO
 statement, but there is something wrong in the construction of it.
 Refer to chapters VIII-XIV for the details of statement syntaxes.

Part of line ignored
 This error will occur if there is any information on a line which
 does not belong there. Often, this is a result of some syntax
 error, but this is not always the case. E.g. the statement
 GOTO x 1
 would cause this error since the "1" is not part of the GOTO
 statement. The error implies that this value was not examined when
 the GOTO statement was parsed, and thus the line is in error.

Missing iteration limit
 This error implies a syntax error in a DO statement. It
 specifically states that the second limit value of the iteration
 could not be located properly.

Bad character range
 A character range was specified in an IMPLICIT statement which
 didn't make sense. E.g. the statement
 IMPLICIT INTEGER(Z-A)
 would give this error since the range "Z-A" is not ascending. Note
 that "A-Z" is quite legal.

Illegal constant expression
 A constant value was expected, but the expression given could not be
 evaluated to an [INTEGER] value. E.g. the declaration
 INTEGER A(1+'a')
 would give this message.

 -50-

 Fortran 77

Illegal symbol type
 A symbol was used on the current line which was not of an
 appropriate type for the given statement. There are many cases
 where this error applies, but the most common is where the wrong
 type variable (or expression) is used where a specific data type is
 required. E.g. the DO statement requires that the iteration limits
 be integer constants or variables. If a DO statement is written
 with one of these limits with type REAL this error will occur.

Multiply defined label
 This error will occur if the current line contains a label which has
 previously occurred in the current program segment.

Misplaced statement
 This message will occur if the current statement is a declaration
 statement and executable statements have already been processed. It
 will also occur if a SUBROUTINE or FUNCTION statement appears after
 the first statement of a program unit.

Statement not allowed here
 This error occurs if a RETURN statement appears in a main program.

Unmatched or Displaced ENDIF
 This error occurs whenever an ENDIF statement is encountered for
 which there is no corresponding IF-THEN statement.

Unmatched or misplaced ELSE or ELSEIF
 This error occurs whenever an ELSE or ELSE IF statement is
 encountered for which there is no preceding IF-THEN statement.

Duplicate declaration
 The current input line contains a variable declaration for a
 variable which has already been defined.

Too many labels in GOTO statement
 This error will occur as the result of a computed GOTO statement
 where the number of labels exceeds the maximum number allowable,
 currently 10.

Too many labels in program segment
 This error occurs if the current program segment contains too many
 statement labels. The current maximum number of labels in any given
 segment is 50.

Parameter error
 This error occurs whenever a SUBROUTINE or FUNCTION statement is
 being processed and the parameters are not variable natives.

 -51-

Fortran 77

Wrong number of subscripts
 This error occurs whenever an array is used in an expression, but
 the number of indices does not match with the number of dimensions
 for the array. E.g. given the declaration:
 DIMENSION X(100, 100)
 the expression
 X(I) = 1.0
 would produce this error message.

Array has too many dimensions
 This error indicates that the current array declaration contains an
 array declaration which has more than 3 dimensions.

Dummy array bound not allowed here
 This error is generated by the use of a dummy array indicator
 (either '*' or a variable name) and the array is not a parameter.
 All arrays which are not parameters must have explicit, constant
 bounds.

Illegal DO destination label
 The destination label in a DO statement has already been defined in
 some other context and is not allowed to be the termination of the
 current DO statement.

DO statements nested too deep
 This error will occur if the current DO statement is included inside
 another DO statement, which Is inside yet another DO statement, ...
 If the DO statements are nested more than 5 levels deep, this error
 is produced.

DO statement nesting error
 This error occurs if the range of one DO statement overlaps the
 range of another DO statement. E.g. the statements
 DO 100 I = 1, 10
 DO 110 J = 1, 10
 100 CONTINUE
 110 CONTINUE
 would produce this error since the range of the second DO Statement
 overlaps the range of the first DO statement.

IF statements nested too deep
 This error ressage will occur if IF-THEN statements are nested
 Inside one another for more than 5 levels.

IF-THEN-ELSE terminates outside DO loop
 This error message is produced if a DO loop starts inside of an
 IF-THEN-ELSE construct, but terminates somewhere outside of this
 construct. The range of the DO loop must be completely contained
 within the IF-THEN-ELSE construct.

Illegal DO termination
 This error message occurs if the terminal statement of a DO loop is
 not legal. DO loops must not terminate with any of the following
 statements:
 GOTO, IF, ELSE, ELSE IF, END, END IF, RETURN, STOP, DO

 -52-

 Fortran 77

DO control variable reassigned
 This message occurs if there is an assignment to the control
 variable for a DO statement which occurs within the range of the DO
 statement. It can also occur if nested DO statements attempt to use
 the same DO control variable.

Not an assignable variable
 An assignment statement contains an expression on the left of the
 "=" which cannot be assigned to.

Illegal DO control variable
 The control variable for a DO loop was not a simple INTEGER
 variable.

Implied DO loop syntax
 An implied DO loop, which occurs within I/O statements, is not
 syntactically correct.

Variable not allowed in DATA statement
 A variable which was declared in COMMON, or as a parameter or the
 name of a function, may not be initialized in a DATA statement.

Variable already initialized
 A variable may appear in only one DATA statement.

Array elements out of order
 When separate array elements are being initialized in a DATA
 statement, they must appear in "linear" order. This is the order in
 which they exist in memory, with the first subscript varying most
 rapidly. See the discussion of arrays in chapter V for more
 details.

Program too complicated - compiler abort error near line #nnnn
 This error actually comes from the compiler system itself. The line
 number printed means nothing to the user's program and should in
 most cases be ignored. The error indicates that the user's program
 is too complex for the Fortran compiler to handle. The size of a
 program which can be handled depends on a number of factors, all of
 which are under the programmer's control.
 The number of unique identifiers in the program.
 The complexity of expressions within the program. Simpler
 expressions can be handled more easily.
 Where identifiers are declared. If the programmer follows good
 programming practice and declares all variables before they
 are used, including external procedures and functions, then
 the compiler will be able to handle much larger programs.

 -53-

Fortran 77

 -54-

 Fortran 77

B. RUNTIME ERROR MESSAGES

The following is a list of the possible error messages which can occur
during the execution of a Fortran program, along with a short
explanation of what causes the error.

I/O error #nn while xxxx
 This error indicates that a system error occurred during some form
 of an input-output operation. The error code "nn" is a decimal
 value which can be found in the operating systems manual. The
 string "xxxx" stands for a piece of text which indicates what type
 of operation was going on at the time. E.g. "xxxx" may actually be
 "while reading on file #mm", which indicates that the I/O error
 occured while the Fortran runtime system was attempting to perform a
 "read" operation for unit number "mm".

Internal file Overflow/Underflow
 This error occurs If an attempt is made to read more characters than
 possible or write more characters than possible on an internal file.
 The amount of data which can be processed via an internal file
 operation, see chapter XI for details, is limited to the size of the
 character array used.

Unable to open file "zzz" on unit # nn
 This error occurs during an OPEN statement if there is some problem
 trying to open the specified file. The error message will be
 followed by an "I/O" error, discussed above.

Too many files open to open unit #nn.
 This error indicates that the program has already opened all the
 files permissible by the Fortran system. Currently this limit is 10
 files, including the standard files on units 0, 5 and 6.

FORMAT too complicated
 A FORMAT string was being processed which contained more than 6
 nesting levels of parentheses.

Unrecognizable FORMAT item
 During the processing of a FORMAT string, a FORMAT item was
 encountered which was not one of the characters ADELXH'$BP/.

Illegal Blank mode
 During the processing of a FORMAT string, a blank mode FORMAT item
 was encountered which was not either BZ or BN.

"." expected in F or E item
 During the processing of a FORMAT string, either an F or an E item
 was found which was not followed by w.d. Refer to chapter XII for
 details.

 -55-

Fortran 77

"ZZ" FORMAT item expected
 This error occurs during the processing of a FORMAT string and a
 particular FORMAT item, represented by "ZZ", was expected at that
 point in the processing. E.g. when reading an Integer value, the
 current FORMAT item must be "I" and if it is not, this error would
 occur.

Illegal field width
 During the processing of a FORMAT string, a FORMAT item of the form
 Zw or Zw.d was expected and the value of "w" or "d" did not make
 sense or was not present. E.g. in the "Iw" FORMAT item, the value
 of "w" must be positive and non-zero.

End of File on unit #nn
 An end of file was encountered while reading from the specified unit
 and the current READ statement did not include an END=
 specification.

Program aborted because of I/O error
 This message will follow many of the Input-Output related errors
 above if the current I/O statement does not include an ERR=
 processing option. See chapter XI for details.

Unit #nn not in correct mode for operation
 This error occurs if READ and WRITE operations are intermixed on a
 sequential file.

Illegal numeric Input
 During the processing of reading Integer, Logical or Real data, some
 illegal character or construct was encountered.

Array index error
 This error occurs if an array reference is made with an index for
 one of the dimensions which has a value outside of the permissible
 range for that array.

Integer Overflow/Underflow
 An Integer operation (multiplication or division) was attempted for
 which the result would not fit in 16 bits.

Division by 0
 Integer division by 0 was attempted.

Floating point Overflow/Underflow
 A floating point (Real) operation was attempted for which the result
 could not be represented. The range of Real values is roughly 1e+38
 to 1e-38.

Floating to Integer conversion error
 An attempt was made to convert a Real value to an Integer value for
 which the value could not fit in 16 bits.

Floating point division by 0
 Real division by 0 was attempted.

 -56-

 Fortran 77

Argument too large for exp(x)
 The argument to exp(x) was so large that the value would cause
 overflow. This error can also be the result of an exponentiation,
 x**y, since this operation is implemented in terms of "exp'.

Negative or zero argument to "zzz"
 The function "zzz" does not allow either negative or zero values to
 be used as arguments. E.g. "log" cannot be used with an argument
 less than or equal to zero.

User program ABORT
 This is not really an error, but is printed by the library routine
 "abort". The purpose of this routine is to abort the program and
 thereby produce any post-mortem information such as a trace or
 variable dump.

 -57-

Fortran 77

 -58-

 Fortran 77

C. INTERFACING WITH EXTERNAL ROUTINES

Routines written in Fortran may be interfaced with routines which have
been written in other languages, most notably assembly language and C.
The following section describes how to interface assembly language
routines with ones written in Fortran. See the documentation on C for
details of interfacing with that language.

To illustrate how Fortran routines interface with other routines, you
must first understand how information is passed between calling routines
and those that are called. In Fortran, all values are passed between
routines by reference. That is, the address of the value or variable is
passed to the called routine rather than the actual value. Consider the
Fortran statement:
 z = fun1(a, b, c)
This statement would be compiled into the following code:
 leas -8,s leave space for Real result
 ldx #c
 pshs x
 ldx #b
 pshs x
 ldx #a
 pshs x
 jsr _fun1
 leas 6,s
 <value for 'z' on top of stack>

From this example, a few rules should become obvious.
1. Parameters are pushed in reverse order.
2. All parameters are addresses, not values.
3. The calling routine is responsible for stack management.
4. All routine names have the character '_' prepended to them.
5. Functions leave their result on the stack, above the parameters. If
 a simple subroutine is being called which returns no explicit values,
 no space need be reserved.

By following the rules above, interfacing with external routines becomes
simple.

Data representation:
The data manipulated by Fortran programs differs based on its type. In
particular, Integers and Logicals are represented by 2 byte quantities,
Reals occupy 8 bytes each and Character strings use exactly their length
bytes (e.g. a Character*6 variable would use 6 bytes). Arrays have
their own specific, internal representation, called a "dope vector".
The form of a dope vector is important to anyone who wishes to access
Fortran arrays from assembly language. The basic form of the dope
vector for the array declared as:
 real x(0:10, 1:25)

 -59-

Fortran 77

would be:
 x fdb __a1
 fdb 2 # of dimensions
 fdb 8 # size of each element (real)
 fdb 0,10 lower and upper bound for 1st dimension
 fdb 1,25 lower and upper bound for 2nd dimension
 __al rmb (25-1+1)*(10-0+1)*8
If in-array is passed as a parameter, the address of the dope vector is
what must be actually passed.

Of course there is an internal routine used to access array elements
which would be of use to the assembly language programmer. Assume that
we need to calculate the address of the element in the above array,
"x(1, 6)". The following code would be used to perform this
calculation:
 ldd #6
 pshs d
 ldd #1
 pshs d
 ldx #x X has dope vector address
 jsr index
 fdb 2 number of dimensions in array
This routine calculates the appropriate address and returns it in the X
register. The index values which are placed on the stack prior to the
call are removed before the routine returns. If any of them are out of
range, an error will be detected and the program aborted.

Program trace facilities:
Another feature of the Fortran system which may be of interest to the
assembly language programmer is the "trace" feature. This is enabled
whenever a routine is compiled with any of the "+dnt" options. This
feature allows the runtime system to keep track of which routines are
currently active and possibly the current line number within that
routine. There are three entry points to this feature, described below:

 ** Enter a new routine
 jsr PAenter
 fcc /routine name/ exactly 8 characters!
 fdb n current line #

 ** Exit the current routine
 jsr PAexit

 ** Update the most current line #
 jsr PAn1
 fdb n new line #
If this feature is used and the program aborts, the system will be able
to print a list of the active routines in the reverse order of how they
were called, along with the line number in that routine. This can be
very useful to the assembly language programmer.

 -60-

 Fortran 77

D. STANDARD FUNCTIONS

Several standard functions are available to the FORTRAN programmer.
These include the basic mathematical functions as well as some type
conversion functions. In the following table which summarizes these
functions, "a1" is the first argument to the function and "a2" is the
second.

 FORTRAN Intrinsic Functions

 0 if a1 < a2
a1-a2 if a1 >= a2RealRealdim
Positive differenceIntegerIntegeridim

 -abs(a1) if a2 < 0.0
 abs(a1) if a2 > 0.0RealRealsign
Sign transferIntegerIntegerisign

 a1-int(al/a2)*a2RealRealamod
RemainderIntegerIntegermod

RealRealabs
Absolute valueIntegerIntegeriabs

Nearest IntegerIntegerRealnint
 int(a-.5) if a < 0.0
 int(a+.5) if a > 0.0
Nearest whole numberRealRealanint
Truncate a RealRealRealaint

Convert Character to IntegerIntegerCharacterichar
Convert Integer to RealRealIntegerfloat
Same as ifixIntegerRealint
Convert Real to IntegerIntegerRealifix

Definition
 Type of
 Result

 Type of
 ArgumentsName

 -61-

Fortran 77

 FORTRAN Intrinsic Functions

Sine
Cosine
Tangent
ArcSine
ArcCosine
ArcTangent
Arctangent(a1/a2)
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent

 Real
 Real
 Real
 Real
 Real
 Real
 Real
 Real
 Real
 Real

 Real
 Real
 Real
 Real
 Real
 Real
 Real
 Real
 Real
 Real

sin
cos
tan
asin
acos
atan
atan2
sinh
cosh
tanh

e**x
Natural log(x)
Common log(x)

 Real
 Real
 Real

 Real
 Real
 Real

exp
alog
alog10

Square rootReal Realsqrt

Minimum value
 a1 if a1 <= a2
 a2 otherwise

 Integer
 Integer
 Real
 Real

 Integer
 Real
 Integer
 Real

min0
min1
amin0
amin1

 Largest value
 a1 if a1 >= a2
 a2 otherwise

 Integer
 Integer
 Real
 Real

Integer
 Real
 Integer
 Real

max0
max1
amax0
amax1

Definition
Type of
 Result

Type of
ArgumentsName

Note:
The standard functions listed above meet the FORTRAN language subset
standard except for the "min" and "max" functions. These are only
defined to work with pairs of values, not an arbitrary list of values as
defined in the standard.

 -62-

 Fortran 77

E. RESERVED WORDS

The following words and symbols are reserved in all contexts in a
FORTRAN program and must not be used as identifiers.

 .AND. ERR
 .EQ. EXTERNAL
 .FALSE. FILE
 .GE. FORMAT
 .GT. FUNCTION
 .LE. GO
 .LT. GOTO
 .NE. IF
 .NOT. IMPLICIT
 .OR. INTEGER
 .TRUE. INTRINSIC
 ACCESS LOGICAL
 ASSIGN OPEN
 BACKSPACE PAUSE
 CALL PRINT
 CHARACTER PROGRAM
 COMMON READ
 CONTINUE REAL
 DATA RECL
 DIMENSION RETURN
 DO REWIND
 ELSE SAVE
 ELSEIF STOP
 END SUBROUTINE
 ENDFILE THEN
 ENDIF TO
 EQUIVALENCE WRITE

 -63-

Fortran 77

 -64-

