SLY User Manual

/ ./ /) NN/ I\ e
\n_._\ [/ / \ / /T —. 5T
Y A A S A l,4-))-,_..;\ ¢ =
/____] [_____ / /-] Pe—=tr (/== T="\D)

version 1.0.42

Written for SLIME Luke Gorrie and others, rewritten by Joao Tévora for SLY.
This file has been placed in the public domain.

Table of Contents

1 Introduction...................................... 1
2 Getting started................. ... L. 2
2.1 Supported Platforms o 2
2.2 Downloading SLY 2
2.3 BasiC SetUD . .o oo 3
2.4 Running SLY ..o 3
2.5 Basic customization 3
2.6 Multiple LiSps. . .o 4

3 A SLY tour for SLIME users 5
4 Working with source files...................... 11
4.1 Evaluating code 11
4.2 Compiling functions and files......... 12
4.3 Autodoc ... 13
4.4 Semantic indentation........... ...t 13
4.5 Reader conditional fontification............... 14
4.6 Macro-expansion commandsttt 14

5 Common functionality.......................... 16
5.1 Finding definitions ...t 16
5.2 Cross-referencing........... ..o 17
5.3 Auto-completion 18
5.4 Interactive objects......... ... 19
5.5 Documentation commands o i 20
5.6 Multiple connectionsooiiiiiiii i 21
5.7 Disassembly commands............ ..o i 22
5.8 Abort/Recovery commands.oiiiiiiiiiiiiia 22
5.9 Temporary buffers......... ..o i 23
5.10 Multi-threading 23

6 The REPL and other special buffers.......... 25
6.1 The REPL: the “top level” i, 25
6.1.1 REPL commands............oouiiiiiiiiiiiiiiiinnnannnn... 25

6.1.2 REPL output..... ..o 26

6.1.3 REPL backreferences..............o i i 28

6.2 The InSpectorovuiiiii e 29
6.3 The SLY-DB Debugger. ..., 30
6.3.1 Examining frames....... i i 30

6.3.2 Invoking restartso 31

6.3.3 Navigating between frames 31

6.3.4 Miscellaneous Commands............cooviiiiieeeeenannnn. 32

6.4 Trace Dialog 32
6.5 Stickers 35

7 Customization 40
7.1 Emacs-side. e 40
7.1.1 Keybindings..... ... 40

T7.1.2 Keymaps . . .vvv ettt 40

7.1.3 Defcustom variables i 42

714 HOOKS .« oot 43

7.2 Lisp-side (Slynk) 43
7.2.1 Communication styleo, 43

7.2.2 Other configurables...........o i 44

8 Tipsand Tricks................................. 47
8.1 Connecting to a remote Lisp. ..., 47
8.1.1 Setting up the Lisp image i 47

8.1.2 Setting up Emacs.......... .o i 48

8.1.3 Setting up pathname translations.......................... 48

8.2 Loading Slynk faster i 48
8.3 Connecting to SLY automatically.................. 49
8.4 REPLs and “Game Loops” ..., 49
8.5 Controlling SLY from outside Emacs....................... ..., 50

9 Extensions............. 51
9.1 Loading and unloading “on the fly” 51
9.2 More contribs ... 52
9.2.1 TRAMP ... 52

9.2.2 Scratch Buffer........ ... 52

10 Credits............... . . 53
Hackers of the good hack o i i 53
Thanks! 53
Key (Character) Index 54
Command and Function Index.................... 56

ii

1 Introduction

SLY is Sylvester the Cat’s Common Lisp IDE. It extends Emacs with support for interactive
programming in Common Lisp.

The features are centered around an Emacs minor-mode called sly-mode, which com-
plements the standard major-mode lisp-mode for editing Lisp source files. sly-mode adds
support for interacting with a running Common Lisp process for compilation, debugging,
documentation lookup, and so on.

SLY attempts to follow the example of Emacs’s own native Emacs-Lisp environment.
Many of the keybindings and interface concepts used to interact with Emacs’s Elisp ma-
chine are reused in SLY to interact with the underlying Common Lisp run-times. Emacs
makes requests to these processes, asking them to compile files or code snippets; deliver
introspection information various objects; or invoke commands or debugging restarts.

Internally, SLY’s user-interface, written in Emacs Lisp, is connected via sockets to one
or more instances of a server program called “Slynk” that is running in the Lisp processes.

The two sides communicate using a Remote Procedure Call (RPC) protocol. The Lisp-
side server is primarily written in portable Common Lisp. However, because some non-
standard functionality is provided differently by each Lisp implementation (SBCL, CMUCL,
Allegro, etc...) the Lisp-side server is again split into two parts — portable and non-portable
implementation — which communicate using a well-defined interface. Each Lisp implemen-
tation provides a separate implementation of that interface, making SLY as a whole readily
portable.

SLY is a direct fork of SLIME, the “Superior Lisp Interaction Mode for Emacs”, which
itself derived from previous Emacs programs such as SLIM and ILISP. If you already know
SLIME, SLY’s closeness to it is immediately apparent. However, where SLIME has tradi-
tionally focused on the stability of its core functionality, SLY aims for a richer feature set,
a more consistent user interface, and an experience generally closer to Emacs’ own.

To understand the differences between the two projects read SLY’s NEWS.md file. For a
hand-on approach to these differences you might want to Chapter 3 [A SLY tour for SLIME
users|, page 5.

https://github.com/joaotavora/sly/blob/master/NEWS.md

2 Getting started

This chapter tells you how to get SLY up and running.

2.1 Supported Platforms

SLY supports a wide range of operating systems and Lisp implementations. SLY runs on
Unix systems, Mac OSX, and Microsoft Windows. GNU Emacs versions 24.4 and above
are supported. XEmacs or Emacs 23 are notably not supported.

The supported Lisp implementations, roughly ordered from the best-supported, are:
e CMU Common Lisp (CMUCL), 19d or newer
e Steel Bank Common Lisp (SBCL), 1.0 or newer
e Clozure Common Lisp (CCL), version 1.3 or newer
e LispWorks, version 4.3 or newer
e Allegro Common Lisp (ACL), version 6 or newer
e CLISP, version 2.35 or newer
e Armed Bear Common Lisp (ABCL)
e Scieneer Common Lisp (SCL), version 1.2.7 or newer
e Embedded Common Lisp (ECL)
e ManKai Common Lisp (MKCL)
o Clasp
Most features work uniformly across implementations, but some are prone to variation.

These include the precision of placing compiler-note annotations, XREF support, and fancy
debugger commands (like “restart frame”).

2.2 Downloading SLY

By far the easiest method for getting SLY up and running is using Emacs’ package system
configured to the popular MELPA repository. This snippet of code should already be in
your configuration:

(add-to-list 'package-archives
'("melpa" . "https://melpa.org/packages/"))
(package-initialize)
You should now be able to issue the command M-x package-install, choose sly and

have it be downloaded and installed automatically. If you don’t find it in the list, ensure
you run M-x package-refresh-contents first.

In other situations, such as when developing SLY itself, you can access the Git repository
directly:

git clone https://github.com/joaotavora/sly.git

If you want to hack on SLY, use Github’s fork functionality and submit a pull request.
Be sure to first read the CONTRIBUTING.md file first.

https://github.com/joaotavora/sly/blob/master/CONTRIBUTING.md

Chapter 2: Getting started 3

2.3 Basic setup

If you installed SLY from MELPA, it is quite possible that you don’t need any more con-
figuration, provided that SLY can find a suitable Lisp executable in your PATH environment
variable.

Otherwise, you need to tell it where a Lisp program can be found, so customize the
variable inferior-lisp-program (see Section 7.1.3 [Defcustom variables], page 42) or add a
line like this one to your ~/.emacs or ~/.emacs.d/init.el (see [Emacs Init File], page 40).

(setq inferior-lisp-program "/opt/sbcl/bin/sbcl")
After evaluating this, you should be able to execute M-x sly and be greeted with a REPL.

If you cloned from the Git repository, you’ll have to add a couple of more lines to your
initialization file configuration:

(add-to-1list 'load-path "~/dir/to/cloned/sly")
(require 'sly-autoloads)

2.4 Running SLY

SLY can either ask Emacs to start its own Lisp subprocesss or connect to a running process
on a local or remote machine.

The first alternative is more common for local development and is started via M-x sly.
The “inferior” Lisp process thus started is told to load the Lisp-side server known as “Slynk”
and then a socket connection is established between Emacs and Lisp. Finally a REPL buffer
is created where you can enter Lisp expressions for evaluation.

The second alternative uses M-x sly-connect. This assumes that that a Slynk server
is running on some local or remote host, and listening on a given port. M-x sly-connect
prompts the user for these values, and upon connection the REPL is established.

2.5 Basic customization

A big part of Emacs, and Emacs’s extensions, are its near-infinite customization possibilities.
SLY is no exception, because it runs on both Emacs and the Lisp process, there are layers
of Emacs-side customization and Lisp-side customization. But don’t be put off by this!
SLY tries hard to provide sensible defaults that don’t “hide” any fanciness beneath layers
of complicated code, so that even a setup with no customization at all exposes SLY’s most
important functionality.

Emacs-side customization is usually done via Emacs-lisp code snippets added to the
user’s initialization file, usually $HOME/.emacs or $HOME/.emacs.d/init.el (see [Emacs
Init File], page 40).

90% of Emacs-lisp customization happens in either “keymaps” or “hooks” (see Sec-
tion 7.1 [Emacs-side], page 40). Still on the Emacs side, there is also a separate interface,
appropriately called customize (or sometimes just custom), that uses a nicer Ul with
mouse-clickable buttons to set some special variables. See See Section 7.1.3 [Defcustom
variables|, page 42.

Lisp-side customization is done exclusively via Common Lisp code snippets added to the
user’s $HOME/ . slynkrc file. See See Section 7.2 [Lisp-side customization], page 43.

Chapter 2: Getting started 4

As a preview, take this simple example of a frequently customized part of SLY: its
keyboard shortcuts, known as “keybindings”. In the following snippet M-h is added to
sly-prefix-map thus yielding C-c M-h as a shortcut to the sly-documentation-lookup
command.

(eval-after-load 'sly
" (define-key sly-prefix-map (kbd "M-h") 'sly-documentation-lookup))

2.6 Multiple Lisps

By default, the command M-x sly starts the program specified with inferior-lisp-
program, a variable that you can customize (see Section 7.1.3 [Defcustom variables],
page 42). However, if you invoke M-x sly with a prefix argument, meaning you type C-u
M-x sly then Emacs prompts for the program which should be started instead.

If you need to do this frequently or if the command involves long filenames it’s more
convenient to set the sly-lisp-implementations variable in your initialization file (see
[Emacs Init File], page 40). For example here we define two programs:

(setq sly-lisp-implementations
'((cmucl ("cmucl" "-quiet"))
(sbcl ("/opt/sbcl/bin/sbcl") :coding-system utf-8-unix)))

Now, if you invoke SLY with a negative prefix argument, M-- M-x sly, you can select a
program from that list. When called without a prefix, either the name specified in sly-
default-1lisp, or the first item of the list will be used. The elements of the list should look
like

(NAME (PROGRAM PROGRAM-ARGS...) &key CODING-SYSTEM INIT INIT-FUNCTION ENV)J
NAME is a symbol and is used to identify the program.
PROGRAM is the filename of the program. Note that the filename can contain spaces.

PROGRAM-ARGS
is a list of command line arguments.

CODING-SYSTEM
the coding system for the connection. (see [sly-net-coding-system], page 42)x

INIT should be a function which takes two arguments: a filename and a character
encoding. The function should return a Lisp expression as a string which in-
structs Lisp to start the Slynk server and to write the port number to the file.
At startup, SLY starts the Lisp process and sends the result of this function to
Lisp’s standard input. As default, sly-init-command is used. An example is
shown in [Loading Slynk faster|, page 49.

INIT-FUNCTION
should be a function which takes no arguments. It is called after the connection
is established. (See also [sly-connected-hook]|, page 43.)

ENV specifies a list of environment variables for the subprocess. E.g.

(sbcl-cvs ("/home/me/sbcl-cvs/src/runtime/sbcl"
"--core" "/home/me/sbcl-cvs/output/sbcl.core")
:env ("SBCL_HOME=/home/me/sbcl-cvs/contrib/"))

initializes SBCL_HOME in the subprocess.

3 A SLY tour for SLIME users

The chances are that if you’re into Common Lisp, you already know about SLIME, the
project that originated SLY. Itself originating in older Emacs extensions SLIM and ILISP,
SLIME has been around for at least a decade longer than SLY and is quite an amazing IDE.
It’s likely that most Lispers have some experience with it, making it a good idea to provide,
in the shape of a quick tutorial, a hands-on overview of some of the improvements of SLY
over SLIME.

When you start SLY with M-x sy (see Section 2.3 [Basic setup], page 3) you are greeted
with its REPL, a common starting point of Lisp hacking sessions. This has been completely
redesigned in SLY: you can spawn multiple REPL sessions with sly-mrepl-new; copy
objects from most places directly into it (with M-RET and M-S-RET); use powerful incremental
history search (with C-r) found in most modern shells; and get real-time assistance when
“backreferecing” previous evaluation values in your Lisp input.

sly-mrepl for sbel ALl L13 (mrepl) [sly shcl/common-lisp-user/-/-1

Starting from the new REPL, let’s showcase some of SLY’s features. Let’s pretend we
want to hack an existing Lisp project. We’ll pick SLY itself, or rather its Lisp server, called
Slynk. Let’s pretend we’re intrigued by the way its “flex”-style completion works. What is
flex completion, you ask? Well, if you're at the REPL you can try it now: it’s a way of TAB-
completing (see Section 5.3 [Completion|, page 18) symbol names based on educated guesses
of a few letters. Thus if we type mvbind, SLY guesses that we probably meant multiple-
value-bind, and if we type domat it might possibly guess cl-ppcre:do-matches. Let’s
dig into the code that makes this happen.

But how? Where to begin, given we know so little about this project?

Well, a good starting point is always the apropos functionality, which is a grep of sorts,
but aware of the symbols loaded in your Lisp, rather the contents of text files. Furthermore,
in SLY, sly-apropos will do a regular-expression-enabled symbol search, which will help
us here since we don’t yet know any symbols names of this mysterious flex feature.

Chapter 3: A SLY tour for SLIME users 6

To enable regular expression searches you need the CL-PPCRE library is loaded (else sly-
apropos falls back to regex-less mode). If you have Quicklisp (https://www.quicklisp.
org/beta/) installed (you do, right?) you need only type (ql:quickload :cl-ppcre) now
from the REPL.

Thus, if we want to hack SLY’s flex completion, and don’t known any of its symbol’s
names, we type C-c C-d C-z (the shortcut for M-x sly-apropos-all) and then type in
“sly.*flex” at the prompt. We follow with enter or return (abbreviated RET or C-m). SLY
should now present all Lisp symbols matching your search pattern.

To load "cl-ppcre”:
Load 1 ASDF system:
cl-ppcre
; Loading "cl-ppcre”

i;CL-PPCRE)

CL-USER=>
:*#*- #*sly-mrepl for shcl* Bot L20 (mrepl) [sly shcl/common-lisp-user/-/-1

Apropos for "sly.*flex"
ELYNK-CDHPLETIDH:FLEX-CDHPLETIDNS
Function: Compute "flex" completions for PATTERN given current PACKAGE-NAME.
Arglist: (PATTERN PACKAGE-NAME &KEY (LIMIT 368))
SLYNK-COMPLETION: : FLEX-MATCHES
Function: Return non-NIL if PATTERN flex-matches STRING.
Arglist: (PATTERN STRING)
SLYNK-COMPLETION: : FLEX-SCORE
Function: (not documented)
Arglist: (STRING INDEXES PATTERN)

[sly] [background-message] Using CL-PPCRE for apropos on regexp "sly.*flex"

In the apropos buffer, let’s grab the mouse and right-click the symbol SLYNK-
COMPLETIONS:FLEX-COMPLETIONS. We'll be presented with a context menu with options
for describing the symbol, inspecting it, or navigating to its source definition. In general,
the Lisp-side objects that SLY presents — symbols, CLOS objects, function calls, etc... —
are right-clickable buttons with such a context menu (see Section 5.4 [Interactive objects],
page 19). For now, let’s navigate to the source definition of the symbol by choosing “Go
To source” from the menu. Alternatively, we could also have just pressed M-. on the
symbol, of course.

From the Lisp source buffer that we landed on (probably slynk-completion.lisp), let’s
trace the newly found function SLYNK-COMPLETIONS:FLEX-COMPLETIONS. However, instead
of using the regular CL:TRACE, we’ll use SLY’s Trace Dialog functionality. This is how we
set it up:

1. first type C-c C-t on the function’s name, or enter that in the minibuffer prompt;

2. now, open the Trace Dialog in a new window by typing C-c T (that’s a capital T). We
should already see our traced function under the heading “Traced specs”;

3. thirdly, for good measure, let’s also trace the nearby function SLYNK-
COMPLETIONS: :FLEX-SCORE by also typing C-c C-t on its name, or just entering it in
the minibuffer prompt.

https://www.quicklisp.org/beta/
https://www.quicklisp.org/beta/

Chapter 3: A SLY tour for SLIME users 7

Now let’s return to the REPL by switching to its *sly-mrepl ... buffer or typing C-c
C-z. To exercise the code we just traced, let’s type something like desbind, followed by
tab, and see if it suggest destructuring-bind as the top match. We could now select some
completion from the list, but instead let’s just type C-g to dismiss the completion, since we
wanted to test completion, not write any actual destructuring-bind expression.

Remember the traced functions in the Trace Dialog? Time to see if we got any traces.
let’s type C-c T to switch to that buffer, and then type capital G. This should produce a
fair number of traces organized in a call graph.

Traced specs (2) [refresh]
[untrace alll
[untrace]l slynk-completion:flex-completions
[untrace]l slynk-completion::flex-score
Trace collection status (27/27) [refreshl
[clear]

0 - slynk-completion:flex-completions
| = "desbind™
| = "common-lisp-user"
| = {({("destructuring-bind” ©.005050505 ((0 "DES") (14 "BIND")) "-f---m--") ("cl:de@
Sstructuring-bind” 0.0043290043 ((3 "DES") (17 "BIND")) "-f---m--") ("common-lisp:destruc®
€turing-bind" ©.063030303 ((12 "DES") (26 "BIND")) "-f---m--") ("sb-bsd-sockets:socket-bi®@
snd” 0.0027472528 ((5 "D") (11 "E") (13 "s") (22 "BIND")) "-fg----- ") ("sb-bsd-sockets:so®
Sckopt-bind-to-device” ©.0018018018 ((5 "D") (11 "E") (13 "S") (23 "BIND")) "-f------ ") .2
§.))
1 |--- slynk-completion::flex-score
| > "desbhind"
| > "SB-BSD-SOCKETS:SOCKET-BIND"
| > (5 11 13 22 23 24 25)
| < 0.0027472528 (0.2747253%)
|--- slynk-completion::flex-score
| > "desbhind"
| > "SB-BSD-SOCKETS:NON-BLOCKING-MODE"

U:%*- ;sly-fréze;.fa; shel* “-TBE‘LT (SLY Trace Dialog) [sly sbel/*/-/-]

We can later learn more about this mode (see Section 6.4 [Trace Dialog], page 32), but
for now let’s again pretend we expected the function FLEX-SCORE to return a wildly different
score for COMMON-LISP:DESTRUCTURING-BIND. In that case we should like to witness said
FLEX-SCORE function respond to any implementation improvements we perform. To do so,
it’s useful to be able to surgically re-run that function with those very same arguments.
Let’s do this by finding the function call in the Trace Dialog window, right-clicking it with
the mouse and selecting “Copy call to REPL”. Pressing M-S-RET on it should accomplish
the same. We are automatically transported to the REPL again, where the desired function
call has already been typed out for us at the command prompt, awaiting a confirmation
RET, which will run the function call:

; The actual arguments passed to trace 15

"desbind"

"COMMON-LISP:DESTRUCTURING-BIND"

(12 13 14 26 27 28 29)

SLYNK-COMPLETION> (slynk-completion::flex-score #v1:0 #vi:1 #v1:2)
0.003030303 (0.30303028%)

SLYNK-COMPLETION>

Chapter 3: A SLY tour for SLIME users 8

> (12 13 14 26 27 28 29)

< 0.003030303 (0.30303028%)
- slynk-completion::flex-score

> "desbind"

> "CL:DESTRUCTURING-BIND"

14

|
|
|
|
|
| > (3 4 517 18 19 20)

| < 0.0043290043 (0.43290043%)

|--- slynk-completion: :[fllex-score

| > "desbind"

| > "COMMON-LISP:DESTRUCTURING-BIND"
| > (12 13 14 26 27 28 29)

|

!

15

< 0.003030303 (0.30303028%)
16 - slynk-completion: :flex-score
; Cleared REPL history
CL-USER=>
; The actual arguments passed to trace 15
"desbind”
"COMMON-LISP:DESTRUCTURING-BIND"
8:2 (12 13 14 26 27 28 29)
CL-USER> (slynk-completion::flex-score #v0:0 #vo:1 #v[:2)

:**-. #*sly-mrepl for sbcl* ALl L7 (mrepl) [sly sbcl/common-lisp-user/-/-]
[sly] Matched history value 2 of entry @: (12 13 14 26 27 28 29)

If those #v. . .’s look odd, here’s what’s going on: to copy the call to the REPL, SLY first
copied over its actual arguments, and then wrote the function using special backreferences
to those arguments in the correct place. These are the #v4:0 and #v4:1 bits seen at the
command prompt. If one puts the cursor on them or hovers with the mouse, this highlights
the corresponding object a few lines above in the buffer. Later, you can also try typing
“#v” at the REPL to incrementally write your own backreferences (see Section 6.1.3 [REPL
backreferences|, page 28).

For one final demonstration, let’s now suppose say we are still intrigued by how that
function (FLEX-SCORE) works internally. So let’s navigate to its definition using M-. again
(or just open the slynk-completion.lisp buffer that you probably still have open). The
function’s code might look like this:

(defun flex-score (pattern string indexes)
"Score the match of PATTERN on STRING.
INDEXES as calculated by FLEX-MATCHES"
;3 FIXME: hideously naive scoring
(declare (ignore pattern))
(float
(/1
(* (length string)
(max 1
(reduce #'+
(loop for (a b) on indexes
while b
collect (- b a 1))))))))

Can this function be working correctly? What do all those expressions return? Should
we reach for good old C-style printf? Let’s try “stickers” instead. SLY’s stickers are a
form of non-intrusive function instrumentation that work like carefully crafted print or
(format t ...)), but are much easier to work with. You can later read more about them

Chapter 3: A SLY tour for SLIME users 9

(see Section 6.5 [Stickers|, page 35), but for now you can just think of them as colorful
labels placed on s-exp’s. Let’s place a bunch here, like this:

1. on the last line of flex-score, place your cursor on the first open parenthesis of that
line (the opening parenthesis of the expression (- b a 1)) and press C-c C-s C-s;

2. now do the same for the symbol indexes a couple of lines above;

3. again, the same for the expressions (loop...), (reduce...), (max...), (length...),
(x...), (/...) and (float...). You could have done this in any order, by the way;

Now let’s recompile this definition with C-c C-c. Beside the minibuffer note something
about stickers being “armed” our function should now look like a rainbow in blue.

File Edit Options Buffers Tools Lisp SLY Help

DEExE & 40B ® |

(defun flex-score (pattern string symbol indexes)
"Score the match of PATTERN on STRING.
INDEXES as calculated by FLEX-MATCHES"
;; FIXME: hideously poor scoring
(declare (ignore pattern symbol))
(float
1

1)

(defun flex-matches (pattern string symbol)
"Return non-NIL if PATTERN flex-matches STRING.
In case of a match, return two values:

A list of non-negative integers which are the indexes of the
characters in PATTERN as found consecutively in STRING. This list
measures in length the number of characters in PATTERN.

A floating-point score. Higher scores for better matches.”
(let ((indexes (loop for char across pattern
for from = @ then (1+ pos)
for pos = (position char string :start from :test #'char-equal)
unless pos
return nil
slynk-completion.lisp 41% L134 Git:master (Lisp) [sly sbel/slynk-completion/-/4
[sly] Compiled and loaded. (No warnings) [0.81 secs] (1@ stickers armed)

Now we return to the SLY REPL, but this time let’s use C-c ~ (that’s C-c followed by
“tilde”) to do so. This syncs the REPL’s local package and local directory to the Lisp file
that we're visiting. This is something not strictly necessary here but generally convenient
when hacking on a system, because you can now call functions from the file you came from
without package-qualification.

Now, to re-run the newly instrumented function, by calling it with the same arguments.
No need to type all that again, because this REPL supports reverse history i-search, re-
member? So just type the binding C-r and then type something like scor to search history
backwards and arrive at the function call copied to the REPL earlier. Type RET once to
confirm that’s the call your after, and RET again to evaluate it. Because those #v. .. back-
references are still trained specifically on those very same function arguments, you can be
sure that the function call is equivalent.

We can now use the C-c C-s C-r to replay the sticker recordings of this last function
call. This is a kind of slow walk-through conducted in separate navigation window called
sly-stickers-replay which pops up. There we can see the Lisp value(s) that each

Chapter 3: A SLY tour for SLIME users 10

sticker eval’ed to each time (or a note if it exited non-locally). We can navigate recordings
with n and p, and do the usual things allowed by interactive objects like inspecting them
and returning them to the REPL. If you need help, toggle help by typing h. There are lots
of options here for navigating stickers, ignoring some stickers, etc. When we’re done in this

window, we press g to quit.

ripitial-value nil)))

(defun flex-score (pattern string indexes)
"Score the match of PATTERN on STRING.
INDEXES as calculated by FLEX-MATCHES"
;; FIXME: hideously poor scoring
(declare (ignore pattern))
(float
0/ 1

(* (length string)

(defun flex-matches (pattern string)
"Return non-NIL if PATTERN flex-matches STRING.
In case of a match, return two values:

A list of non-negative integers which are the indexes of the

Playhead at recording 19 of 19 total recordings
Sticker 10 on line 129 of slynk-completion.lisp returned 1 values:
=> 1/330 (0.003030303, 10/33%)
Skipping recordings of sticker 5.
n => next, p => previous, x => ignore, h => help, q => quit
%*- *gly-stickers-replay for sbel* All L1 (SLY Stickers Replay) [sly shel/*/-/-]
[sly] Rolled over to end

Finally, we declare that we’re finished debugging FLEX-MATCHES. Even though stickers
don’t get saved to the file in any way, we decide we’re not interested in them anymore. So
let’s open the “SLY” menu in the menu bar, find the “Delete stickers from top-level form”
option under the “Stickers” sub-menu, and click it. Alternatively, we could have typed C-u
C-c C-s C-s.

11

4 Working with source files

SLY’s commands when editing a Lisp file are provided via sly-editing-mode, a minor-mode
used in conjunction with Emacs’s 1isp-mode.

This chapter describes SLY’s commands for editing and working in Lisp source buffers.
There are, of course, more SLY’s commands that also apply to these buffers (see Chapter 5
[Common functionality], page 16), but with very few exceptions these commands will always
be run from a .lisp file.

4.1 Evaluating code

These commands each evaluate a Common Lisp expression in a different way. Usually they
mimic commands for evaluating Emacs Lisp code. By default they show their results in
the echo area, but a prefix argument C-u inserts the results into the current buffer, while a
negative prefix argument M-- sends them to the kill ring.

C-x C-e
M-x sly-eval-last-expression
Evaluate the expression before point and show the result in the echo area.

C-M-x

M-x sly-eval-defun
Evaluate the current toplevel form and show the result in the echo area. ‘C-M-x’
treats ‘defvar’ expressions specially. Normally, evaluating a ‘defvar’ expression
does nothing if the variable it defines already has a value. But ‘C-M-x’ un-
conditionally resets the variable to the initial value specified in the ‘defvar’
expression. This special feature is convenient for debugging Lisp programs.

If C-M-x or C-x C-e is given a numeric argument, it inserts the value into the current
buffer, rather than displaying it in the echo area.
C-c :
M-x sly-interactive-eval
Evaluate an expression read from the minibuffer.

C-c C-r
M-x sly-eval-region
Evaluate the region.

C-c C-p
M-x sly-pprint-eval-last-expression
Evaluate the expression before point and pretty-print the result in a fresh buffer.
C-cE
M-x sly-edit-value
Edit the value of a setf-able form in a new buffer *Edit <form>*. The value is
inserted into a temporary buffer for editing and then set in Lisp when committed
with C-c C-c.
C-c C-u
M-x sly-undefine-function
Undefine the function, with fmakunbound, for the symbol at point.

Chapter 4: Working with source files 12

M-x sly-remove-method
Remove a specific method of a generic function at point.

4.2 Compiling functions and files

SLY has fancy commands for compiling functions, files, and packages. The fancy part is
that notes and warnings offered by the Lisp compiler are intercepted and annotated directly
onto the corresponding expressions in the Lisp source buffer. (Give it a try to see what this
means.)

C-c C-c

M-x sly-compile-defun
Compile the top-level form at point. The region blinks shortly to give some
feedback which part was chosen.

With (positive) prefix argument the form is compiled with maximal debug set-
tings (C-u C-c C-c). With negative prefix argument it is compiled for speed
(M-- C-c C-c¢). If a numeric argument is passed set debug or speed settings to
it depending on its sign.

The code for the region is executed after compilation. In principle, the command
writes the region to a file, compiles that file, and loads the resulting code.

This compilation may arm stickers (see Section 6.5 [Stickers|, page 35).

C-c C-k

M-x sly-compile-and-load-file
Compile and load the current buffer’s source file. If the compilation step fails,
the file is not loaded. It’s not always easy to tell whether the compilation failed:
occasionally you may end up in the debugger during the load step.

With (positive) prefix argument the file is compiled with maximal debug set-
tings (C-u C-c C-k). With negative prefix argument it is compiled for speed
(M-- C-c C-k). If a numeric argument is passed set debug or speed settings to
it depending on its sign.

This compilation may arm stickers (see Section 6.5 [Stickers], page 35).

C-c M-k
M-x sly-compile-file
Compile (but don’t load) the current buffer’s source file.
C-c C-1
M-x sly-load-file
Load a Lisp file. This command uses the Common Lisp LOAD function.
M-x sly-compile-region
Compile the selected region.
This compilation may arm stickers (see Section 6.5 [Stickers], page 35).
The annotations are indicated as underlining on source forms. The compiler message

associated with an annotation can be read either by placing the mouse over the text or with
the selection commands below.

Chapter 4: Working with source files 13

M-n
M-x sly-next-note
Move the point to the next compiler note and displays the note.

M-p
M-x sly-previous-note
Move the point to the previous compiler note and displays the note.

C-c M-c
M-x sly-remove-notes
Remove all annotations from the buffer.

C-x -~

M-x next-error
Visit the next-error message. This is not actually a SLY command but SLY
creates a hidden buffer so that most of the Compilation mode commands (See
Info file emacs, node ‘Compilation Mode’) work similarly for Lisp as for batch
compilers.

4.3 Autodoc

SLY automatically shows information about symbols near the point. For function names
the argument list is displayed, and for global variables, the value. Autodoc is implemented
by means of eldoc-mode of Emacs.

M-x sly-arglist NAME
Show the argument list of the function NAME.

M-x sly-autodoc-mode
Toggles autodoc-mode on or off according to the argument, and toggles the
mode when invoked without argument.

M-x sly-autodoc-manually
Like sly-autodoc, but when called twice, or after sly-autodoc was already auto-
matically called, display multiline arglist.

If sly-autodoc-use-multiline-p is set to non-nil, allow long autodoc messages to
resize echo area display.

autodoc-mode is a SLY extension and can be turned off if you so wish (see Chapter 9
[Extensions], page 51)

4.4 Semantic indentation

SLY automatically discovers how to indent the macros in your Lisp system. To do this the
Lisp side scans all the macros in the system and reports to Emacs all the ones with &body
arguments. Emacs then indents these specially, putting the first arguments four spaces in
and the “body” arguments just two spaces, as usual.

This should “just work.” If you are a lucky sort of person you needn’t read the rest of
this section.

To simplify the implementation, SLY doesn’t distinguish between macros with the same
symbol-name but different packages. This makes it fit nicely with Emacs’s indentation code.

Chapter 4: Working with source files 14

However, if you do have several macros with the same symbol-name then they will all be
indented the same way, arbitrarily using the style from one of their arglists. You can find
out which symbols are involved in collisions with:

(slynk:print-indentation-lossage)
If a collision causes you irritation, don’t have a nervous breakdown, just override the

Elisp symbol’s sly-common-lisp-indent-function property to your taste. SLY won’t
override your custom settings, it just tries to give you good defaults.

A more subtle issue is that imperfect caching is used for the sake of performance.

In an ideal world, Lisp would automatically scan every symbol for indentation changes
after each command from Emacs. However, this is too expensive to do every time. Instead
Lisp usually just scans the symbols whose home package matches the one used by the Emacs
buffer where the request comes from. That is sufficient to pick up the indentation of most
interactively-defined macros. To catch the rest we make a full scan of every symbol each
time a new Lisp package is created between commands — that takes care of things like new
systems being loaded.

You can use M-x sly-update-indentation to force all symbols to be scanned for in-
dentation information.

4.5 Reader conditional fontification

SLY automatically evaluates reader-conditional expressions, like #+1inux, in source buffers
and “grays out” code that will be skipped for the current Lisp connection.

4.6 Macro-expansion commands

C-c C-m

M-x sly-expand-1
Macroexpand (or compiler-macroexpand) the expression at point once. If in-
voked with a prefix argument use macroexpand instead or macroexpand-1 (or
compiler-macroexpand instead of compiler-macroexpand-1).

M-x sly-macroexpand-1
Macroexpand the expression at point once. If invoked with a prefix argument,
use macroexpand instead of macroexpand-1.

C-c M-m
M-x sly-macroexpand-all
Fully macroexpand the expression at point.
M-x sly-compiler-macroexpand-1
Display the compiler-macro expansion of sexp at point.
M-x sly-compiler-macroexpand
Repeatedly expand compiler macros of sexp at point.
M-x sly-format-string-expand
Expand the format-string at point and display it. With prefix arg, or if no
string at point, prompt the user for a string to expand.

! Of course we made sure it was actually too slow before making the ugly optimization.

Chapter 4: Working with source files 15

Within a sly macroexpansion buffer some extra commands are provided (these commands
are always available but are only bound to keys in a macroexpansion buffer).

C-c C-m

M-x sly-macroexpand-1-inplace
Just like sly-macroexpand-1 but the original form is replaced with the expan-
sion.

g

M-x sly-macroexpand-1-inplace
The last macroexpansion is performed again, the current contents of the
macroexpansion buffer are replaced with the new expansion.

q
M-x sly-temp-buffer-quit
Close the expansion buffer.

C-_

M-x sly-macroexpand-undo
Undo last macroexpansion operation.

16

5 Common functionality

This chapter describes the commands available throughout SLY-enabled buffers, which are
not only Lisp source buffers, but every auxiliary buffer created by SLY, such as the REPL,
Inspector, etc (see Chapter 6 [The REPL and other special buffers|, page 25) In general, it’s a
good bet that if the buffer’s name starts with *sly-. . .*, these commands and functionality
will be available there.

5.1 Finding definitions

One of the most used keybindings across all of SLY is the familiar M-. binding for
sly-edit-definition.

Here’s the gist of it: when pressed with the cursor over a symbol name, that symbol’s
name definition is looked up by the Lisp process, thus producing a Lisp source location,
which might be a file, or a file-less buffer. For convenience, a type of “breadcrumb” is left
behind at the original location where M-. was pressed, so that another keybinding M-, takes
the user back to the original location. Thus multiple M-. trace a path through lisp sources
that can be traced back with an equal number of M-,.

M-.
M-x sly-edit-definition
Go to the definition of the symbol at point.

M-,

M-*

M-x sly-pop-find-definition-stack
Go back to the point where M-. was invoked. This gives multi-level backtracking
when M-. has been used several times.

C-x4 .

M-x sly-edit-definition-other-window
Like sly-edit-definition but switches to the other window to edit the defi-
nition in.

Cx5.
M-x sly-edit-definition-other-frame
Like sly-edit-definition but opens another frame to edit the definition in.

The behaviour of the M-. binding is sometimes affected by the type of symbol you are
giving it.
e For single functions or variables, M-. immediately switches the current window’s buffer
and position to the target defun or defvar.

e For symbols with more than one associated definition, say, generic functions, the same
M-. finds all methods and presents these results in separate window displaying a special
sly-xref buffer (see Section 5.2 [Cross-referencing], page 17).

Chapter 5: Common functionality 17

5.2 Cross-referencing

Finding and presenting the definition of a function is actually the most elementary aspect
of broader cross-referencing facilities framework in SLY. There are other types of questions
about the source code relations that you can ask the Lisp process.!

The following keybindings behave much like the M-. keybinding (see Section 5.1 [Finding
definitions|, page 16): when pressed as is they make a query about the symbol at point, but
with a C-u prefix argument they prompt the user for a symbol. Importantly, they always
popup a transient *sly-xref* buffer in a different window.

M-7
M-x sly-edit-uses
Find all the references to this symbol, whatever the type of that reference.

C-c C-w C-c
M-x sly-who-calls
Show function callers.

C-c C-w C-w
M-x sly-calls-who
Show all known callees.

C-c C-w C-r
M-x sly-who-references
Show references to global variable.

C-c C-wC-b
M-x sly-who-binds
Show bindings of a global variable.

C-c C-w C-s
M-x sly-who-sets
Show assignments to a global variable.

C-c C-w C-m
M-x sly-who-macroexpands
Show expansions of a macro.

M-x sly-who-specializes
Show all known methods specialized on a class.

There are two further “List callers/callees” commands that operate by rummaging
through function objects on the heap at a low-level to discover the call graph. They are
only available with some Lisp systems, and are most useful as a fallback when precise XREF
information is unavailable.

C-c <
M-x sly-list-callers
List callers of a function.

I This depends on the underlying implementation of some of these facilities: for systems with no built-in
XREF support SLY queries a portable XREF package, which is taken from the CMU AI Repository and
bundled with SLY.

Chapter 5: Common functionality 18

C-c >
M-x sly-list-callees
List callees of a function.

In the resulting *sly-xref* buffer, these commands are available:

RET

M-x sly-show-xref
Show definition at point in the other window. Do not leave the *sly-xref
butffer.

Space
M-x sly-goto-xref
Show definition at point in the other window and close the *sly-xref buffer.

C-c C-c
M-x sly-recompile-xref
Recompile definition at point. Uses prefix arguments like sly-compile-defun.

C-c C-k
M-x sly-recompile-all-xrefs
Recompile all definitions. Uses prefix arguments like sly-compile-defun.

5.3 Auto-completion

Completion commands are used to complete a symbol or form based on what is already
present at point. Emacs has many completion mechanisms that SLY tries to mimic as much
as possible.

SLY provides two styles of completion. The choice between them happens in the Emacs
customization variable see [sly-complete-symbol-function], page 42, which can be set to two
values, or methods:

1. sly-flex-completions This method is speculative. It assumes that the letters you’ve
already typed aren’t necessarily an exact prefix of the symbol you’re thinking of. There-
fore, any possible completion that contains these letters, in the order that you have
typed them, is potentially a match. Completion matches are then sorted according to
a score that should reflect the probability that you really meant that them.

Flex completion implies that the package-qualification needed to access some symbols
is automatically discovered for you. However, to avoid searching too many symbols
unnecessarily, this method makes some minimal assumptions that you can override:
it assumes, for example, that you don’t normally want to complete to fully qualified
internal symbols, but will do so if it finds two consecutive colons (::) in your initial
pattern. Similarly, it assumes that if you start a completion on a word starting :, you
must mean a keyword (a symbol from the keyword package.)

Here are the top results for some typical searches.

CL-USER> (quiloa<TAB>) -> (qgl:quickload)
CL-USER> (mvbind<TAB>) -> (multiple-value-bind)
CL-USER> (scan<TAB>) -> (ppcre:scan)
CL-USER> (p::scan<TAB>) -> (ppcre::scanner)

CL-USER> (setf locadirs<TAB>) -> (setf gl:*local-project-directoriesx)|]

Chapter 5: Common functionality 19

CL-USER> foobar -> asdf:monolithic-binary-op

2. sly-simple-completions This method uses “classical” completion on an exact prefix.
Although poorer, this is simpler, more predictable and closer to the default Emacs
completion method. You type a prefix for a symbol reference and SLY let’s you choose
from symbols whose beginnings match it exactly.

As an enhancement in SLY over Emacs’ built-in completion styles, when the *sly-
completions* buffer pops up, some keybindings are momentarily diverted to it:

C-n
<down>
M-x sly-next-completion
Select the next completion.

C-p
<up>
M-x sly-prev-completion
Select the previous completion.

tab
RET
M-x sly-choose-completion
Choose the currently selected completion and enter it at point.

As soon as the user selects a completion or gives up by pressing C-g or moves out of the
symbol being completed, the *sly-completions* buffer is closed.

5.4 Interactive objects

In many buffers and modes in SLY, there are snippets of text that represent objects “living”
in the Lisp process connected to SLY. These regions are known in SLY as interactive values
or objects. You can tell these objects from regular text by their distinct “face”, is Emacs
parlance for text colour, or decoration. Another way to check if bit of text is an interactive
object is to hover above it with the mouse and right-click (<mouse-3>) it: a context menu
will appear listing actions that you can take on that object.

Depending on the mode, different actions may be active for different types of objects.
Actions can also be invoked using keybindings active only when the cursor is on the button.

M-RET, " "Copy to REPL''
Copy the object to the main REPL (see Section 6.1.2 [REPL output], page 26,
and see Section 6.1.3 [REPL backreferences], page 28).

M-S-RET, *“Copy call to REPL''
An experimental feature. On some backtrace frames in the Debugger (see Sec-
tion 6.3 [Debugger|, page 30) and Trace Dialog (see Section 6.4 [Trace Dialog],
page 32), copy the object to the main REPL. That’s meta-shift-return, by the
way, there’s no capital “S”.

., ''Go To Source''
For function symbols, debugger frames, or traced function calls, go to the Lisp
source, much like with M-..

Chapter 5: Common functionality 20

'Show Source''
For function symbols, debugger frames, or traced function calls, show the Lisp
source in another window, but don’t switch to it.

v,

'Pretty Print''
Pretty print the object in a separate buffer, much like sly-pprint-eval-last-
expression.

Dp;

i,''Inspect'’
Inspect the object in a separate inspector buffer (see Section 6.2 [Inspector],

page 29).

'Describe'’
Describe the object in a separate buffer using Lisp’s CL:DESCRIBE.

d,

5.5 Documentation commands

SLY’s online documentation commands follow the example of Emacs Lisp. The commands

all share the common prefix C-c C-d and allow the final key to be modified or unmodified

(see Section 7.1.1 [Keybindings|, page 40.)

M-x sly-info
This command should land you in an electronic version of this very manual that
you can read inside Emacs.

C-c C-d C-d

M-x sly-describe-symbol
Describe the symbol at point.

C-c C-d C-f

M-x sly-describe-function
Describe the function at point.

C-c C-d C-a

M-x sly-apropos
Perform an apropos search on Lisp symbol names for a regular expression match
and display their documentation strings. By default the external symbols of
all packages are searched. With a prefix argument you can choose a specific
package and whether to include unexported symbols.

C-c C-d C-z

M-x sly-apropos-all
Like sly-apropos but also includes internal symbols by default.

C-c C-d C-p

M-x sly-apropos-package
Show apropos results of all symbols in a package. This command is for browsing
a package at a high-level. With package-name completion it also serves as a
rudimentary Smalltalk-ish image-browser.

C-c C-d C-h

M-x sly-hyperspec—lookup
Lookup the symbol at point in the Common Lisp Hyperspec. This uses the
familiar hyperspec.el to show the appropriate section in a web browser. The

Chapter 5: Common functionality 21

Hyperspec is found either on the Web or in common-lisp-hyperspec-root,
and the browser is selected by browse-url-browser-function.

Note: this is one case where C-c C-d h is not the same as C-c C-d C-h.

C-cC-d~
M-x hyperspec-lookup-format
Lookup a format character in the Common Lisp Hyperspec.

C-c C-d #
M-x hyperspec-lookup-reader-macro
Lookup a reader macro in the Common Lisp Hyperspec.

5.6 Multiple connections

SLY is able to connect to multiple Lisp processes at the same time. The M-x s1y command,
when invoked with a prefix argument, will offer to create an additional Lisp process if one
is already running. This is often convenient, but it requires some understanding to make
sure that your SLY commands execute in the Lisp that you expect them to.

Some SLY buffers are tied to specific Lisp processes. It’s easy read that from the buffer’s
name which will usually be *sly-<something> for <connection>*, where connection is
the name of the connection.

Each Lisp connection has its own main REPL buffer (see Section 6.1 [REPL], page 25),
and all expressions entered or SLY commands invoked in that buffer are sent to the associated
connection. Other buffers created by SLY are similarly tied to the connections they originate
from, including SLY-DB buffers (see Section 6.3 [Debugger|, page 30), apropos result listings,
and so on. These buffers are the result of some interaction with a Lisp process, so commands
in them always go back to that same process.

Commands executed in other places, such as sly-mode source buffers, always use the
“default” connection. Usually this is the most recently established connection, but this can
be reassigned via the “connection list” buffer:

C-cCxc
M-x sly-list-connections
Pop up a buffer listing the established connections.

C-cC-xn
M-x sly-next-connection
Switch to the next Lisp connection by cycling through all connections.

C-cC-xp
M-x sly-prev-connection
Switch to the previous Lisp connection by cycling through all connections.

The buffer displayed by sly-list-connections gives a one-line summary of each con-
nection. The summary shows the connection’s serial number, the name of the Lisp im-
plementation, and other details of the Lisp process. The current “default” connection is
indicated with an asterisk.

The commands available in the connection-list buffer are:

Chapter 5: Common functionality 22

RET
M-x sly-goto-connection
Pop to the REPL buffer of the connection at point.

d

M-x sly—-connection-list-make-default
Make the connection at point the “default” connection. It will then be used for
commands in sly-mode source buffers.

g

M-x sly-update-connection-list
Update the connection list in the buffer.

q
M-x sly-temp-buffer-quit
Quit the connection list (kill buffer, restore window configuration).

R
M-x sly-restart-connection-at-point
Restart the Lisp process for the connection at point.

M-x sly-connect
Connect to a running Slynk server. With prefix argument, asks if all connections
should be closed first.

M-x sly-disconnect
Disconnect all connections.

M-x sly-abort-connection
Abort the current attempt to connect.

5.7 Disassembly commands

C-c M-d

M-x sly-disassemble-symbol
Disassemble the function definition of the symbol at point.

C-c C-t

M-x sly-toggle-trace-fdefinition
Toggle tracing of the function at point. If invoked with a prefix argument, read
additional information, like which particular method should be traced.

M-x sly-untrace-all
Untrace all functions.

5.8 Abort/Recovery commands

C-c C-b
M-x sly-interrupt
Interrupt Lisp (send SIGINT).

M-x sly-restart-inferior-1lisp
Restart the inferior-1lisp process.

Chapter 5: Common functionality 23

C-c~
M-x sly-mrepl-sync
Synchronize the current package and working directory from Emacs to Lisp.

M-x sly-cd
Set the current directory of the Lisp process. This also changes the current
directory of the REPL buffer.

M-x sly-pwd
Print the current directory of the Lisp process.

5.9 Temporary buffers

Some SLY commands create temporary buffers to display their results. Although these
buffers usually have their own special-purpose major-modes, certain conventions are ob-
served throughout.

Temporary buffers can be dismissed by pressing g. This kills the buffer and restores the
window configuration as it was before the buffer was displayed. Temporary buffers can also
be killed with the usual commands like kill-buffer, in which case the previous window
configuration won’t be restored.

Pressing RET is supposed to “do the most obvious useful thing.” For instance, in an
apropos buffer this prints a full description of the symbol at point, and in an XREF buffer
it displays the source code for the reference at point. This convention is inherited from
Emacs’s own buffers for apropos listings, compilation results, etc.

Temporary buffers containing Lisp symbols use sly-mode in addition to any special
mode of their own. This makes the usual SLY commands available for describing symbols,
looking up function definitions, and so on.

Initial focus of those “description” buffers depends on the variable sly-description-
autofocus. If nil (the default), description buffers do not receive focus automatically, and
vice versa.

5.10 Multi-threading

If the Lisp system supports multi-threading, SLY spawns a new thread for each request,
e.g., C-x C-e creates a new thread to evaluate the expression. An exception to this rule
are requests from the REPL: all commands entered in the REPL buffer are evaluated in a
dedicated REPL thread.

You can see a listing of the threads for the current connection with the command M-x
sly-list-threads, or C-c C-x t. This pops open a *sly-threads* buffer, where some
keybindings to control threads are active, if you know what you are doing. The most useful
is probably k to kill a thread, but type C-h m in that buffer to get a full listing.

Some complications arise with multi-threading and special variables. Non-global spe-
cial bindings are thread-local, e.g., changing the value of a let bound special variable in
one thread has no effect on the binding of the variables with the same name in other
threads. This makes it sometimes difficult to change the printer or reader behaviour for
new threads. The variable slynk:*default-worker-thread-bindings* was introduced
for such situations: instead of modifying the global value of a variable, add a binding the

Chapter 5: Common functionality 24

slynk:*default-worker-thread-bindings*. E.g., with the following code, new threads
will read floating point values as doubles by default:

(push '(*read-default-float-format* . double-float)
slynk:*default-worker-thread-bindingsx*) .

25

6 The REPL and other special buffers

6.1 The REPL: the “top level”

SLY

uses a custom Read-Eval-Print Loop (REPL, also known as a “top level”, or listener):

Conditions signalled in REPL expressions are debugged with the integrated SLY de-
bugger.

Return values are interactive values (see Section 5.4 [Interactive objects|, page 19)
distinguished from printed output by separate Emacs faces (colors).

Output from the Lisp process is inserted in the right place, and doesn’t get mixed up
with user input.

Multiple REPLs are possible in the same Lisp connection. This is useful for performing
quick one-off experiments in different packages or directories without disturbing the
state of an existing REPL.

The REPL is a central hub for much of SLY’s functionality, since objects examined in
the inspector (see Section 6.2 [Inspector], page 29), debugger (see Section 6.3 [Debug-
ger], page 30), and other extensions can be returned there.

Switching to the REPL from anywhere in a SLY buffer is a very common task. One way
to do it is to find the *sly-mrepl...* buffer in Emacs’s buffer list, but there are other
ways to reach a REPL.

C-c
M-x

M-x

C-c
M-x

6.1
RET
M-x

TAB
M-x

C-z
sly-mrepl
Start or select an existing main REPL buffer.

sly-mrepl-new
Start a new secondary REPLsession, prompting for a nickname.

sly-mrepl-sync
Go to the REPL, switching package and default directory as applicable. More
precisely the Lisp variables *package* and *default-pathname-defaults* are
affected by the location where the command was issued. In a specific position
of a .1isp file, for instance the current package and that file’s directory are
chosen.

.1 REPL commands

sly-mrepl-return
Evaluate the expression at prompt and return the result.

sly-mrepl-indent-and-complete-symbol
Indent the current line. If line already indented complete the symbol at point
(see Section 5.3 [Completion], page 18). If there is not symbol at point show the
argument list of the most recently enclosed function or macro in the minibuffer.

Chapter 6: The REPL and other special buffers 26

M-p

M-x sly-mrepl-previous—-input-or—-button
When at the current prompt, fetches previous input from the history, otherwise
jumps to the previous interactive value (see Section 5.4 [Interactive objects],
page 19) representing a Lisp object.

M-n

M-x sly-mrepl-next-input-or-button
When at the current prompt, fetches next input from the history, otherwise
jumps to the previous interactive value representing a Lisp object.

C-r

M-x isearch-backward
This regular Emacs keybinding, when invoked at the current REPL prompt,
starts a special transient mode turning the prompt into the string “History-
isearch backward”. While in this mode, the user can compose a string used
to search backwards through history, and reverse the direction of search by
pressing C-s. When invoked outside the current REPL prompt, does a normal
text search through the buffer contents.

C-c C-b
M-x sly-interrupt
Interrupts the current thread of the inferior-lisp process.

For convenience this function is also bound to C-c C-c.

C-M-p
M-x sly-button-backward
Jump to the previous interactive value representing a Lisp object.

C-M-n
M-x sly-button-forward
Jump to the next interactive value representing a Lisp object.

C-c C-o
M-x sly-mrepl-clear-recent-output
Clear output between current and last REPL prompts, keeping results.

C-c M-o
M-x sly-mrepl-clear-repl
Clear the whole REPL of output and results.

6.1.2 REPL output

REPLs wouldn’t be much use if they just took user input and didn’t print anything back.
In SLY the output printed to the REPL can come from four different places:

e A function’s return values. One line per return value is printed. Each line of printed
text, called a REPL result, persists after more expressions are evaluated, and is actually
a button (see Section 5.4 [Interactive objects|, page 19) presenting the Lisp-side object.
You can, for instance, inspect it (see Section 6.2 [Inspector], page 29) or re-return it
to right before the current command prompt so that you may conjure it up again, as
usual in Lisp REPLs, with the special variable *.

Chapter 6: The REPL and other special buffers 27

In the SLY REPL, in addition to the *, ** and *** special variables, return values can
also be accessed through a special backreference (see Section 6.1.3 [REPL backrefer-
ences|, page 28).

e An object may be copied to the REPL from some other part in SLY, such as the
Inspector (see Section 6.2 [Inspector|, page 29), Debugger (see Section 6.3 [Debugger],
page 30), etc. using the familiar M-RET binding, or by selecting “Copy to REPL” from
the context menu of an interactive object. Aside from not having been produced by
the evaluation of a Lisp form in the REPL, these objects behaves exactly like a REPL
result.

e The characters printed to the standard Lisp streams *standard-output*, *error-
output* and *trace-output* as a synchronous and direct result of the evaluation of
an expression in the REPL.

e The characters printed to the standard Lisp streams *standard-output*, *error-
output* and *trace-output* printed, perhaps asynchronously, from others threads,
for instance. This feature is optional and controlled by the variable SLYNK : *GLOBALLY~
REDIRECT-I0O*.

For advanced users, there are some Lisp-side Slynk variables affecting the way Slynk trans-
mits REPL output to SLY.

SLYNK:*GLOBALLY-REDIRECT-I0*
This variable controls the global redirection of the the standard streams
(*standard-output*, etc) to the REPL in Emacs. The default value is
:started-from-emacs, which means that redirection should only take place
upon M-x sly invocations. When t, global redirection happens even for
sessions started with M-x sly-connect, meaning output may be diverted from
wherever you started the Lisp server originally.

When NIL these streams are only temporarily redirected to Emacs using dy-
namic bindings while handling requests, meaning you only see output caused
by the commands you issued to the REPL.

Note that *standard-input* is currently never globally redirected into Emacs,
because it can interact badly with the Lisp’s native REPL by having it try to
read from the Emacs one.

Also note that secondary REPLs (those started with sly-mrepl-new) don’t
receive any redirected output.

SLYNK : *USE-DEDICATED-OUTPUT-STREAM=*
This variable controls whether to use a separate socket solely for Lisp to send
printed output to Emacs through, which is more efficient than sending the
output in protocol messages to Emacs.

The default value is : started-from-emacs, which means that the socket should
only be established upon M-x sly invocations. When t, it’s established even
for sessions started with M-x sly-connect. When NIL usual protocol messages
are used for sending input to the REPL.

Notice that using a dedicated output stream makes it more difficult to commu-
nicate to a Lisp running on a remote host via SSH (see Section 8.1 [Connecting

Chapter 6: The REPL and other special buffers 28

to a remote Lisp|, page 47). If you connect via M-x sly-connect, the default
:started-from-emacs value should ensure this isn’t a problem.

SLYNK : *xDEDICATED-QUTPUT-STREAM-PORT*
When *USE-DEDICATED-OUTPUT-STREAM* is t the stream will be opened on
this port. The default value, 0, means that the stream will be opened on some
random port.

SLYNK: *DEDICATED-OUTPUT-STREAM-BUFFERING*
For efficiency, some Lisps backends wait until a certain conditions are met in
a Lisp character stream before flushing that stream’s contents, thus sending
it to the SLY REPL. Be advised that this sometimes works poorly on some
implementations, so it’s probably best to leave alone. Possible values are nil
(no buffering), t (enable buffering) or :1ine (enable buffering on EOL)

6.1.3 REPL backreferences

In a regular Lisp REPL, the objects produced by evaluating expressions at the command
prompt can usually be referenced in future commands using the special variables *, ** and
x*x*. This is also true of the SLY REPL, but it also provides a different way to re-conjure
these objects through a special Lisp reader macro character available only in the REPL.
The macro character, which is #v by default takes, in a terse syntax, two indexes specifying
the precise objects in all of the SLY REPL’s recorded history.

Consider this fragment of a REPL session:

; Cleared REPL history

CL-USER> (values 'a 'b 'c)

A

B

C

CL-USER> (list #vO0)

(A)

CL-USER> (list #v0:1 #v0:2)

(B ©

CL-USER> (append #v1:0 #v2:0)

(A BOC

CL-USER>

Admittedly, while useful, this doesn’t seem terribly easy to use at first sight. There are a
couple of reasons, however, that should make it worth considering:
e Backreference annotation and highlighting

As soon as the SLY REPL detects that you have pressed #v, all the REPL results that
can possibly be referenced are temporarily annotated on their left with two special
numbers. These numbers are in the syntax accepted by the #v macro-character, namely
#vENTRY-IDX:VALUE-IDX.
Furthermore, as soon as you type a number for ENTRY-IDX, only that entries values
remain highlighted. Then, as you finish the entry with VALUE-IDX, only that exact
object remains highlighted. If you make a mistake (say, by typing a letter or an invalid
number) while composing #v syntax, SLY lets you know by painting the backreference
red.

Chapter 6: The REPL and other special buffers 29

Highlighting also happens when you place the cursor over existing valid #v expressions.
Returning functions calls

An experimental feature in SLY allows copying function calls to the REPL from the
Debugger (see Section 6.3 [Debugger]|, page 30) and the Trace Dialog (see Section 6.4
[Trace Dialog], page 32). In those buffers, pressing keybinding M-S-RET over objects
that represent function calls will copy the call, and not the object, to the REPL. This
works by first copying over the argument objects in order to the REPL results, and then
composing an input line that includes the called function’s name and backreferences to
those arguments (see Section 6.1.3 [REPL backreferences|, page 28).

Naturally, this call isn’t ezactly the same because it doesn’t evaluate in the same
dynamic environment as the original one. But it’s a useful debug technique because
backreferences are stable!, so repeating that very same function call with the very
same arguments is just a matter of textually copying the previous expression into the
command prompt, no matter how far ago it happened. And that, in turn, is as easy as
using C-r and some characters (see Section 6.1.1 [REPL commands]|, page 25) to arrive
and repeat the desired REPL history entry.

6.2 The Inspector

The SLY inspector is a Emacs-based alternative to the standard INSPECT function. The
inspector presents objects in Emacs buffers using a combination of plain text, hyperlinks to
related objects.

The inspector can easily be specialized for the objects in your own programs. For details

see the inspect-for-emacs generic function in slynk-backend.lisp.

C-clI
M-x sly-inspect

Inspect the value of an expression entered in the minibuffer.

The standard commands available in the inspector are:

RET
M-x sly-inspector-operate-on-point

D

If point is on a value then recursively call the inspector on that value. If point
is on an action then call that action.

M-x sly-inspector-describe-inspectee

e

Describe the slot at point.

M-x sly-inspector-eval

\%4

Evaluate an expression in the context of the inspected object. The variable *
will be bound to the inspected object.

M-x sly-inspector-toggle-verbose

Toggle between verbose and terse mode. Default is determined by
‘slynk:*inspector-verbose™’.

1 until you clear the REPL’s output, that is

Chapter 6: The REPL and other special buffers 30

1
M-x sly-inspector-pop

Go back to the previous object (return from RET).
n

M-x sly-inspector-next
The inverse of 1. Also bound to SPC.

g

M-x sly-inspector-reinspect
Reinspect.

h

M-x sly-inspector-history
Show the previously inspected objects.

q
M-x sly-inspector-quit

Dismiss the inspector buffer.
>

M-x sly-inspector-fetch-all
Fetch all inspector contents and go to the end.

M-RET

M-x sly-mrepl-copy-part-to-repl
Store the value under point in the variable ‘*’. This can then be used to access
the object in the REPL.

TAB, M-x forward-button
S-TAB, M-x backward-button
Jump to the next and previous inspectable object respectively.

6.3 The SLY-DB Debugger

SLY has a custom Emacs-based debugger called SLY-DB. Conditions signalled in the Lisp
system invoke SLY-DB in Emacs by way of the Lisp *DEBUGGER-HOOKx*.

SLY-DB pops up a buffer when a condition is signalled. The buffer displays a description
of the condition, a list of restarts, and a backtrace. Commands are offered for invoking
restarts, examining the backtrace, and poking around in stack frames.

6.3.1 Examining frames
Commands for examining the stack frame at point.

t
M-x sly-db-toggle-details
Toggle display of local variables and CATCH tags.

v

M-x sly—-db-show-frame-source
View the frame’s current source expression. The expression is presented in the
Lisp source file’s buffer.

Chapter 6: The REPL and other special buffers 31

e
M-x sly-db-eval-in-frame
Evaluate an expression in the frame. The expression can refer to the available
local variables in the frame.

d

M-x sly-db-pprint-eval-in-frame
Evaluate an expression in the frame and pretty-print the result in a temporary
buffer.

D

M-x sly-db-disassemble
Disassemble the frame’s function. Includes information such as the instruction
pointer within the frame.

i
M-x sly-db-inspect-in-frame
Inspect the result of evaluating an expression in the frame.

C-c C-c
M-x sly-db-recompile-frame-source
Recompile frame. C-u C-c C-c for recompiling with maximum debug settings.

6.3.2 Invoking restarts

a
M-x sly-db-abort
Invoke the ABORT restart.

q

M-x sly-db-quit
“Quit” — For SLY evaluation requests, invoke a restart which restores to a known
program state. For errors in other threads, See [*SLY-DB-QUIT-RESTART*|,
page 44.

o
M-x sly-db-continue
Invoke the CONTINUE restart.

0...9
M-x sly-db-invoke-restart-n
Invoke a restart by number.

Restarts can also be invoked by pressing RET or Mouse-2 on them in the buffer.

6.3.3 Navigating between frames

n, M-x sly-db-down
p, M-x sly-db-up
Move between frames.

Chapter 6: The REPL and other special buffers 32

M-n, M-x sly-db-details—down

M-p, M-x sly-db-details-up
Move between frames “with sugar”: hide the details of the original frame and
display the details and source code of the next. Sugared motion makes you see
the details and source code for the current frame only.

>
M-x sly-db-end-of-backtrace
Fetch the entire backtrace and go to the last frame.

<
M-x sly-db-beginning-of-backtrace
Go to the first frame.

6.3.4 Miscellaneous Commands

r
M-x sly-db-restart-frame
Restart execution of the frame with the same arguments it was originally called
with. (This command is not available in all implementations.)

R

M-x sly-db-return-from-frame
Return from the frame with a value entered in the minibuffer. (This command
is not available in all implementations.)

B
M-x sly-db-break-with-default-debugger
Exit SLY-DB and debug the condition using the Lisp system’s default debugger.

C
M-x sly-db-inspect-condition
Inspect the condition currently being debugged.

M-x sly-interactive-eval
Evaluate an expression entered in the minibuffer.

A
M-x sly-db-break-with-system-debugger
Attach debugger (e.g. gdb) to the current lisp process.

6.4 Trace Dialog

The SLY Trace Dialog, in package sly-trace-dialog, is a tracing facility, similar to Com-
mon Lisp’s trace, but interactive rather than purely textual.

You use it just like you would regular trace: after tracing a function, calling it causes
interesting information about that particular call to be reported.

However, instead of printing the trace results to the the *trace-output* stream (usually
the REPL), the SLY Trace Dialog collects and stores them in your Lisp environment until,
on user’s request, they are fetched into Emacs and displayed in a dialog-like interactive
view.

Chapter 6: The REPL and other special buffers 33

After starting up SLY, SLY’s Trace Dialog installs a Trace menu in the menu-bar of any
sly-mode buffer and adds two new commands, with respective key-bindings:

C-c C-t

M-x sly-trace-dialog-toggle-trace
If point is on a symbol name, toggle tracing of its function definition. If point
is not on a symbol, prompt user for a function.
With a C-u prefix argument, and if your lisp implementation allows it, attempt
to decipher lambdas, methods and other complicated function signatures.
The function is traced for the SLY Trace Dialog only, i.e. it is not found in the
list returned by Common Lisp’s trace.

C-cT

M-x sly-trace-dialog
Pop to the interactive Trace Dialog buffer associated with the current connec-
tion (see Section 5.6 [Multiple connections], page 21).

Chapter 6: The REPL and other special buffers 34

Consider the (useless) program:

(defun foo (n) (if (plusp n) (* n (bar (1- n))) 1))
(defun bar (n) (if (plusp n) (* n (foo (1- n))) 1))
After tracing both foo and bar with C-c M-t, calling call (foo 2) and moving to the
trace dialog with C-c T, we are presented with this buffer.
Traced specs (2) [refresh]
[untrace all]

[untrace] common-lisp-user::bar
[untrace] common-lisp-user::foo

Trace collection status (3/3) [refresh]
[clear]

0 - common-lisp-user::foo

| > 2
| <2
1 "--- common-lisp-user::bar
[> 1
| <1
2 "—- common-lisp-user::foo
>0
<1

The dialog is divided into sections displaying the functions already traced, the trace
collection progress and the actual trace tree that follow your program’s logic. The most
important key-bindings in this buffer are:

g
M-x sly-trace-dialog-fetch-status

Update information on the trace collection and traced specs.

G

M-x sly-trace-dialog-fetch-traces
Fetch the next batch of outstanding (not fetched yet) traces. With a C-u prefix
argument, repeat until no more outstanding traces.

C-k
M-x sly-trace-dialog-clear-fetched-traces
Prompt for confirmation, then clear all traces, both fetched and outstanding.

The arguments and return values below each entry are interactive buttons. Clicking them
opens the inspector (see Section 6.2 [Inspector|, page 29). Invoking M-RET (sly-trace-
dialog-copy-down-to-repl) returns them to the REPL for manipulation (see Section 6.1
[REPL], page 25). The number left of each entry indicates its absolute position in the
calling order, which might differ from display order in case multiple threads call the same
traced function.

sly-trace-dialog-hide-details-mode hides arguments and return values so you can

concentrate on the calling logic. Additionally, sly-trace-dialog-autofollow-mode will
automatically display additional detail about an entry when the cursor moves over it.

Chapter 6: The REPL and other special buffers 35

6.5 Stickers

SLY Stickers, implemented as the sly-stickers contrib (see Chapter 9 [Extensions],
page 51), is a tool for “live” code annotations. It’s an alternative to the print or break
statements you add to your code when debugging.

Contrary to these techniques, “stickers” are non-intrusive, meaning that saving your file
doesn’t save your debug code along with it.

Here’s the general workflow:

e In Lisp source files, using C-c C-s C-s or M-x sly-stickers-dwim places a sticker on
any Lisp form. Stickers can exist inside other stickers.

0606 __] slynk-arglists.lisp ol
(defslyfun autodoc (raw-form print-right-margin)

(handler-bpind ((serious-condition
#'(lambda (c)
(unless (debug-on-slynk-error)
(let ((*print-right-margin® print-right-margin))
(return-fTrom autedoc
(list
(format nil €301

(9]

ind (Torm arglist obj-at-curser form-path)
d-subform-with-arglist (parse-raw-form FawW-form))
(cond ((boundp-and-interesting obj-at-cursor
(list (print-variable-to-string obj-at-cursor) nil))

(with-available-arglist (arglist) arglist
fdecoded-arglist-to-string
arglist
print-right-margin
(car form)
(form-path-to-arglist-path form-path
b

orm
arglist)ih

e Stickers are “armed” when a definition or a file is compiled with the familiar C-c C-c
(M-x sly-compile-defun) or C-c C-k (M-x sly-compile-file) commands. An armed
sticker changes color from the default grey background to a blue background.

Chapter 6: The REPL and other special buffers 36

(defslyfun autodoc (raw-form &key print-right-margin)

"Return a list of two elements.
First, a string representing the arglist for the deepest subform in
RAW-FORM that does have an arglist. The highlighted parameter is

wrapped in ===»> X <===,

Second, 3 boolean value telling whether the returned string can be cached.”
(handler-bind ((serious-condition
#' (lambda (c)
(unless (debug-on-slynk-error
(let ((*print-right-margin® print-right-margin))
(return-from autedoc

(list :error
(format mil "Arglist Error: V'=AV"" €))))))))

(with-buffer-syntax ()

(multiple-value-bind (form arglist obj-at-cursor form-path)
(Find-subformowi th-arglis+ [HEFSELEawESSF M)

(cond ((boundp-and-interesting obj-at-cursor)
(list (pr\nt—var\able—tc—strwng cb]—at—cursor) nily)
(t
(list
(with-available-arglist (arglist) arglist

r

[sly] Compiled and loaded. (Ne warnings) [0.02 secs] (6 stickers armed)

From this point on, when the Lisp code is executed, the results of evaluating the un-
derlying forms are captured in the Lisp side. Stickers help you examine your program’s

behaviour in three ways:

1. C-c C-s C-r (or M-x sly-stickers-replay) interactively walks the user through
recordings in the order that they occurred. In the created *sly-stickers-replay*
buffer, type h for a list of keybindings active in that buffer.

Chapter 6: The REPL and other special buffers 37

(formét nwlr Arglist Error: W'=A\"" <IN

(with-buffer-syntax ()

(multiple-value-bind (form arglist obj-at-cursor form-path)
(find-subform-with-arglist _)
(cond ((boundp-and-interesting obj-at-cursor)
(list (print-variable-to-string obj-at-cursor) nil))
(t
(list
(With-available-arglist (arglist) arglist

Replaying recording 61 of 65, 37 new since last replay
Sticker 24 in line 1168 of slynk-arglists.lisp returned 1 values:

=> (SLYNK::DEFSLYFUN SLYNK:AUTODOC ..)

Skipping recordings of deleted stickers.

Scan recordings forward . Scan recordings backward

Inspect first sticker value Return sticker values to REPL
Jump to a recording Jump to newest recordings

Go to last recerding Go to last recording

Toggle help . Quit

Ignore this sticker Toggle ignoring deleted stickers
Reset ignore list

2. To step through stickers as your code is executed, ensure that “breaking stickers”
are enabled via M-x sly-stickers-toggle-break-on-stickers. Whenever a sticker-
covered expression is reached, the debugger comes up with useful restarts and inter-
active for the values produced. You can tweak this behaviour by setting the Lisp-side
variable SLYNK-STICKERS:*BREAK-ON-STICKERS* to a list with the elements :before
and :after, making SLY break before a sticker, after it, or both.

Chapter 6: The REPL and other special buffers 38

(format nil "Arglist Error‘ VAT e nm

(with-buffer-syntax ()

(multiple-value-bind (form arglist obj-at-cursor form-path)
(find-subform-with-arglist)
(cond ((boundp-and-interestinjg obj-at-cursor)

(list (print-variable-to-string obj-at-cursor) nil))
(t

(list

(with-available-arglist (arglist) arglist

#<RIGHT-AFTER-STICKER 23 (recorded #<RECORDING 4 values>»)>
[Condition of type SLYNK-STICKERS::RIGHT-AFTER-STICKER]

Sticker 23 in line 2 of slynk-arglists.lisp returned 4 values:
=> (BOUNDP-AND-INTERESTING)
=» #S(ARGLIST :PROVIDED-ARGS NIL :REQUIRED-ARGS (SYMBOL) :OPTIOMAL-ARGS NIL :KEY-P NIL $
=> BOUNDP-AND-INTERESTING
=> (D)

Restarts:
: [CONTINUE] OK,. continue
: [IGNORE-THIS-STICKER] Stop bothering me about this sticker
: [*ABORT] Return to SLY's top level.
AR & d_(#<THREAD "

B

3. C-c C-s S (M-x sly-stickers-fetch) populates the sticker overlay with the latest
captured results, called “recordings”. If a sticker has captured any recordings, it will
turn green, otherwise it will turn red. A sticker whose Lisp expression has caused a
non-local exit, will be also be marked with a special face.

Chapter 6: The REPL and other special buffers 39

00606 | | slynk-arglists.lisp "
mdefslyfuw autodoc (raw-form print-right-margin)

(((serious-condition
(c)
((debug-on-slynk-error)
(((*print-right-margin® print-right-margin))
autedoc
(list
(format nil crim

[(form arglist obj-at-cursor form-path)
(find-subform-with-arglist (parse-raw-form Faw-form))
[{{boundp-and-interesting obj-at-curser)
(list (print-variable-to-string GBJESEECUFRSEE) nil))
(t
(list
(with-available it (arglist) arglist
(decoded-arglist-to-string
arglist
print-right-margin
{car form)
(form-path-to-arglist-path form-path
form
arglist)))

69% L1152 Git-master (Lisp hs 3 yas) [

At any point, stickers can be removed with the same sly-stickers-dwim keybinding,
by placing the cursor at the beginning of a sticker. Additionally adding prefix arguments
to sly-stickers-dwim increase its scope, so C-u C-c C-s C-s will remove all stickers from
the current function and C-u C-u C-c C-s C-s will remove all stickers from the current file.

Stickers can be nested inside other stickers, so it is possible to record the value of an
expression inside another expression which is also annotated.

Stickers are interactive parts just like any other part in SLY that represents Lisp-side
objects, so they can be inspected and returned to the REPL, for example. To move through
the stickers with the keyboard use the existing keybindings to move through compilation
notes (M-p and M-n) or use C-c C-s p and C-c C-s n (sly-stickers-prev-sticker and
sly-stickers-next-sticker).

There are some caveats when using SLY Stickers:

e Stickers on unevaluated forms (such as let variable bindings, or other constructs) are
rejected, though the function is still compiled as usual. To let the user know about this,
these stickers remain grey, and are marked as “disarmed”. A message also appears in
the echo area.

e Stickers placed on expressions inside backquoted expressions in macros are always
armed, even though they may come to provoke a runtime error when the macro’s
expansion is run. Think of this when setting a sticker inside a macro definition.

40

7 Customization

7.1 Emacs-side

7.1.1 Keybindings

In general we try to make our key bindings fit with the overall Emacs style.

We never bind C-h anywhere in a key sequence. This is because Emacs has a built-in
default so that typing a prefix followed by C-h will display all bindings starting with that
prefix, so C-c C-d C-h will actually list the bindings for all documentation commands. This
feature is just a bit too useful to clobber!

“Are you deliberately spiting Emacs’s brilliant online help facilities? The gods

will be angry!”
This is a brilliant piece of advice. The Emacs online help facilities are your most immediate,
up-to-date and complete resource for keybinding information. They are your friends:

C-h k <key>
describe-key “What does this key do?”
Describes current function bound to <key> for focus buffer.

C-h b describe-bindings “Fzactly what bindings are available?”
Lists the current key-bindings for the focus buffer.

C-h m describe-mode “Tell me all about this mode”
Shows all the available major mode keys, then the minor mode keys, for the
modes of the focus buffer.

C-h1 view-lossage “Woah, what key chord did I just do?”
Shows you the literal sequence of keys you’ve pressed in order.

For example, you can add one of the following to your Emacs init file (usually ~/.emacs
or ~/.emacs.d/init.el, but see Section “Emacs Init File” in The Emacs Manual).

(eval-after-load 'sly
" (define-key sly-prefix-map (kbd "M-h") 'sly-documentation-lookup))
SLY comes bundled with many extensions (called “contribs” for historical reasons, see
Chapter 9 [Extensions], page 51) which you can customize just like SLY’s code. To make
C-c C-c clear the last REPL prompt’s output, for example, use
(eval-after-load 'sly-mrepl
" (define-key sly-mrepl-mode-map (kbd "C-c C-k")
'sly-mrepl-clear-recent-output))

7.1.2 Keymaps

Emacs’s keybindings “live” in keymap variables. To customize a particular binding and
keep it from trampling on other important keys you should do it in one of SLY’s keymaps.
The following non-exhaustive list of SLY-related keymaps is just a reference: the manual
will go over each associated functionality in detail.
sly-doc-map
Keymap for documentation commands (see Section 5.5 [Documentation],
page 20) in SLY-related buffers, accessible by the C-c C-d prefix.

Chapter 7: Customization 41

sly-who-map
Keymap for cross-referencing (“who-calls”) commands (see Section 5.2 [Cross-
referencing], page 17) in SLY-related buffers, accessible by the C-c C-w prefix.

sly-selector—map
A keymap for SLY-related functionality that should be available in globally in
all Emacs buffers (not just SLY-related buffers).

sly-mode-map
A keymap for functionality available in all SLY-related buffers.

sly-editing-mode-map
A keymap for SLY functionality available in Lisp source files.

sly-popup-buffer-mode-map
A keymap for functionality available in the temporary “popup” buffers that
SLY displays (see Section 5.9 [Temporary buffers|, page 23)

sly-apropos-mode-map
A keymap for functionality available in the temporary SLY “apropos” buffers
(see Section 5.5 [Documentation], page 20).

sly-xref-mode-map
A keymap for functionality available in the temporary xref buffers used by
cross-referencing commands (see Section 5.2 [Cross-referencing], page 17).

sly-macroexpansion-minor-mode-map
A keymap for functionality available in the temporary buffers used for macroex-
pansion presentation (see Section 4.6 [Macro-expansion|, page 14).

sly-db-mode-map
A keymap for functionality available in the debugger buffers used to debug
errors in the Lisp process (see Section 6.3 [Debugger], page 30).

sly-thread-control-mode-map
A keymap for functionality available in the SLY buffers dedicated to controlling
Lisp threads (see Section 5.10 [Multi-threading], page 23).

sly-connection-list-mode-map
A keymap for functionality available in the SLY buffers dedicated to managing
multiple Lisp connections (see Section 5.6 [Multiple connections], page 21).

sly-inspector-mode-map
A keymap for functionality available in the SLY buffers dedicated to inspecting
Lisp objects (see Section 6.2 [Inspector|, page 29).

sly-mrepl-mode-map
A keymap for functionality available in SLY’s REPL buffers (see Section 6.1
[REPL], page 25).

sly-trace-dialog-mode-map
A keymap for functionality available in SLY’s “Trace Dialog” buffers (see Sec-
tion 6.4 [Trace Dialog], page 32).

Chapter 7: Customization 42

7.1.3 Defcustom variables

The Emacs part of SLY can be configured with the Emacs customize system, just use M-x
customize-group s1y RET. Because the customize system is self-describing, we only cover
a few important or obscure configuration options here in the manual.

sly-truncate-lines
The value to use for truncate-lines in line-by-line summary buffers popped
up by SLY. This is t by default, which ensures that lines do not wrap in
backtraces, apropos listings, and so on. It can however cause information to
spill off the screen.

sly-complete-symbol-function
The function to use for completion of Lisp symbols. Two completion styles
are available: sly-simple-completions and sly-flex-completions (see Sec-
tion 5.3 [Completion|, page 18).

sly-filename-translations
This variable controls filename translation between Emacs and the Lisp system.
It is useful if you run Emacs and Lisp on separate machines which don’t share
a common file system or if they share the filesystem but have different layouts,
as is the case with SMB-based file sharing.

sly-net-coding-system
If you want to transmit Unicode characters between Emacs and the Lisp system,
you should customize this variable. E.g., if you use SBCL, you can set:
(setq sly-net-coding-system 'utf-8-unix)
To actually display Unicode characters you also need appropriate fonts, other-
wise the characters will be rendered as hollow boxes. If you are using Allegro
CL and GNU Emacs, you can also use emacs-mule-unix as coding system.
GNU Emacs has often nicer fonts for the latter encoding. (Different encodings
can be used for different Lisps, see Section 2.6 [Multiple Lisps], page 4.)

sly-keep-buffers-on-connection-close
This variable holds a list of keywords indicating SLY buffer types that should
be kept around when a connection closes. For example, if the variable’s value
includes :mrepl (which is the default), REPL buffer is kept around while all
other stale buffers (debugger, inspector, etc..) are automatically killed.

The following customization variables affect the behaviour of the REPL (see Section 6.1
[REPLY], page 25):

sly-mrepl-shortcut
The key to use to trigger the REPL’s “comma shortcut”. We recommend you
keep the default setting which is the comma (,) key, since there’s special logic
in the REPL to discern if you're typing a comma inside a backquoted list or
not.

sly-mrepl-prompt-formatter
Holds a function that can be set from your Emacs init file (see Section “Emacs
Init File” in The Emacs Manual) to change the way the prompt is rendered.
It takes a number of arguments describing the prompt and should return a

Chapter 7: Customization 43

propertized Elisp string. See the default value, sly-mrepl-default-prompt,
for how to implement such a prompt.

sly-mrepl-history-file-name
Holds a string designating the file to use for keeping the shared REPL histories
persistently. The default is to use a hidden file named .sly-mrepl-history in
the user’s home directory.

sly-mrepl-prevent-duplicate-history
A symbol. If non-nil, prevent duplicate entries in input history. If the non-nil
value is the symbol move, the previously occuring entry is moved to a more
recent spot.

sly-mrepl-eli-like-history-navigation
If non-NIL, navigate history like in ELI, Franz’s Common Lisp IDE for Emacs.

7.1.4 Hooks

sly-mode-hook
This hook is run each time a buffer enters sly-mode. It is most useful for
setting buffer-local configuration in your Lisp source buffers. An example use
is to enable sly-autodoc-mode (see Section 4.3 [Autodoc], page 13).

sly-connected-hook
This hook is run when SLY establishes a connection to a Lisp server. An example
use is to pop to a new REPL.

sly-db-hook
This hook is run after SLY-DB is invoked. The hook functions are called from
the SLY-DB buffer after it is initialized. An example use is to add sly-db-
print-condition to this hook, which makes all conditions debugged with SLY-
DB be recorded in the REPL buffer.

7.2 Lisp-side (Slynk)

The Lisp server side of SLY (known as “Slynk”) offers several variables to configure. The
initialization file /.slynk.1lisp is automatically evaluated at startup and can be used to
set these variables.

7.2.1 Communication style

The most important configurable is SLYNK:*COMMUNICATION-STYLE#*, which specifies the
mechanism by which Lisp reads and processes protocol messages from Emacs. The choice
of communication style has a global influence on SLY’s operation.

The available communication styles are:

NIL This style simply loops reading input from the communication socket and serves
SLY protocol events as they arise. The simplicity means that the Lisp cannot
do any other processing while under SLY’s control.

:FD-HANDLER
This style uses the classical Unix-style “select()-loop.” Slynk registers the
communication socket with an event-dispatching framework (such as SERVE-
EVENT in CMUCL and SBCL) and receives a callback when data is available.

Chapter 7: Customization 44

In this style requests from Emacs are only detected and processed when Lisp
enters the event-loop. This style is simple and predictable.

:SIGIO This style uses signal-driven I/O with a SIGIO signal handler. Lisp receives
requests from Emacs along with a signal, causing it to interrupt whatever it
is doing to serve the request. This style has the advantage of responsiveness,
since Emacs can perform operations in Lisp even while it is busy doing other
things. It also allows Emacs to issue requests concurrently, e.g. to send one
long-running request (like compilation) and then interrupt that with several
short requests before it completes. The disadvantages are that it may conflict
with other uses of SIGIO by Lisp code, and it may cause untold havoc by
interrupting Lisp at an awkward moment.

: SPAWN This style uses multiprocessing support in the Lisp system to execute each
request in a separate thread. This style has similar properties to :SIGIO, but
it does not use signals and all requests issued by Emacs can be executed in
parallel.

The default request handling style is chosen according to the capabilities of
your Lisp system. The general order of preference is :SPAWN, then :SIGIO, then
:FD-HANDLER, with NIL as a last resort. You can check the default style by calling
SLYNK-BACKEND: : PREFERRED-COMMUNICATION-STYLE. You can also override the default by
setting SLYNK:*COMMUNICATION-STYLE#* in your Slynk init file (see Section 7.2 [Lisp-side
customization], page 43).

7.2.2 Other configurables

These Lisp variables can be configured via your ~/.slynk.1lisp file:

SLYNK : *CONFIGURE-EMACS-INDENTATION*
This variable controls whether indentation styles for &body-arguments in macros
are discovered and sent to Emacs. It is enabled by default.

SLYNK : *GLOBAL-DEBUGGER*
When true (the default) this causes *DEBUGGER-HOOK* to be globally set to
SLYNK : SLYNK-DEBUGGER-HOOK and thus for SLY to handle all debugging in the
Lisp image. This is for debugging multithreaded and callback-driven applica-
tions.

SLYNK: *SLY-DB-QUIT-RESTART*
This variable names the restart that is invoked when pressing g (see [sly-db-
quit], page 31) in SLY-DB. For SLY evaluation requests this is unconditionally
bound to a restart that returns to a safe point. This variable is supposed to
customize what q does if an application’s thread lands into the debugger (see
SLYNK:*GLDBAL-DEBUGGER*)

(setf slynk:*sly-db-quit-restart* 'sb-thread:terminate-thread)

Chapter 7: Customization 45

SLYNK:
SLYNK:
SLYNK:
SLYNK:

SLYNK:
SLYNK:

SLYNK:
SLYNK:

BACKTRACE-PRINTER-BINDINGS
MACROEXPAND-PRINTER-BINDINGS=
SLY-DB-PRINTER-BINDINGS
SLYNK-PPRINT-BINDINGS
These variables can be used to customize the printer in various situations. The
values of the variables are association lists of printer variable names with the
corresponding value. E.g., to enable the pretty printer for formatting backtraces
in SLY-DB, you can use:
(push '(*print-pretty* . t) slynk:*sly-db-printer-bindings*).
The fact that most SLY output (in the REPL for instance, see Section 6.1
[REPL], page 25) uses SLYNK:*SLYNK-PPRINT-BINDINGS* may surprise you if
you expected it to use a global setting for, say, *PRINT-LENGTH*. The rationale
for this decision is that output is a very basic feature of SLY, and it should
keep operating normally even if you (mistakenly) set absurd values for some
PRINT-. . . variable. You, of course, override this protection:
(setq slynk:*slynk-pprint-bindingsx
(delete '*print-lengthx
slynk:*slynk-pprint-bindings* :key #'car))

STRING-ELISION-LENGTH

STRING-ELISTION-LENGTH
This variable controls the maximum length of strings before their pretty printed
representation in the Inspector, Debugger, REPL, etc is elided. Don’t set this
variable directly, create a binding for this variable in SLYNK:*SLYNK-PPRINT-
BINDINGS* instead.

ECHO-NUMBER-ALIST

PRESENT-NUMBER-ALIST
These variables hold function designators used for displaying numbers when
SLY presents them in its interface.

The difference between the two functions is that *PRESENT-NUMBER-ALISTx,
if non-nil, overrides *ECHO-NUMBER-ALIST* in the context of the REPL, Trace
Dialog and Stickers (see Section 6.1 [REPL], page 25, Section 6.4 [Trace Dia-
log], page 32, and Section 6.5 [Stickers|, page 35), while the latter is used for
commands like C-x C-e or the inspector (see Section 4.1 [Evaluation|, page 11,
Section 6.2 [Inspector|, page 29).

If in doubt, use *ECHO-NUMBER-ALIST*.

Both variables have the same structure: each element in the alist takes the form
(TYPE . FUNCTIONS), where TYPE is a type designator and FUNCTIONS is a list
of function designators for displaying that number in SLY. Each function takes
the number as a single argument and returns a string, or nil, if that particular
representation is to be disregarded.

Additionally if a given function chooses to return t as its optional second value,
then all the remaining functions following it in the list are disregarded.

For integer numbers, the default value of this variable holds function designators
that echo an integer number in its binary, hexadecimal and octal representa-
tion. However, if your application is using integers to represent Unix Epoch

https://en.wikipedia.org/wiki/Unix_time

Chapter 7: Customization 46

Times you can use this function to display a human-readable time whenever
you evaluate an integer.

(defparameter *day-names* '("Monday" "Tuesday" "Wednesday"
"Thursday" "Friday" "Saturday"
"Sunday"))

(defun fancy-unix-epoch-time (integer)
"Format INTEGER as a Unix Epoch Time if within 10 years from now."|
(let ((now (get-universal-time))
(tenyears (encode-universal-time 0 0 0 1 1 1910 0))
(unix-to-universal
(+ integer
(encode-universal-time 0 0 0 1 1 1970 0))))
(when (< (- now tenyears) unix-to-universal (+ now tenyears))|]
(multiple-value-bind
(second minute hour date month year day-of-week dst-p tz)]]
(decode-universal-time unix-to-universal)
(declare (ignore dst-p))
(format nil "~2,'0d:72,'0d:72,'0d on ~a, ~d/72,'0d4/7d (GMT~ed)"l
hour minute second (nth day-of-week *day-names*)[]
month date year (- tz))))))

(pushnew 'fancy-unix-epoch-time
(cdr (assoc 'integer slynk:*echo-number-alistx*)))

42 ; => 42 (6 bits, #x2A, #052, #b101010)
1451404675 ; => 1451404675 (15:57:55 on Tuesday, 12/29/2015 (GMT+0), 31 bits

SLYNK-APROPOS : *PREFERRED-APROPOS-MATCHER *
This variable holds a function used for performing apropos searches. It de-
faults to SLYNK-APROPOS :MAKE-FLEX-MATCHER, but can also be set to SLYNK-
APROPOS : MAKE-CL-PPCRE-MATCHER (to use a regex-able matcher) or SLYNK-
APROPOS : MAKE-PLAIN-MATCHER, for example.

SLYNK: *LOG-EVENTS*
Setting this variable to t causes all protocol messages exchanged with Emacs
to be printed to *TERMINAL-IO0*. This is useful for low-level debugging and for
observing how SLY works “on the wire.” The output of *TERMINAL-IO* can
be found in your Lisp system’s own listener, usually in the buffer *inferior-
lispx*.

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

47

8 Tips and Tricks

8.1 Connecting to a remote Lisp

One of the advantages of the way SLY is implemented is that we can easily run the Emacs
side (sly.el and friends) on one machine and the Lisp backend (Slynk) on another. The
basic idea is to start up Lisp on the remote machine, load Slynk and wait for incoming SLY
connections. On the local machine we start up Emacs and tell SLY to connect to the remote
machine. The details are a bit messier but the underlying idea is that simple.

8.1.1 Setting up the Lisp image
The easiest way to load Slynk “standalone” (i.e. without having M-x sly start a Lisp that
is subsidiary to a particular Emacs), is to load the ASDF system definition for Slynk.

Make sure the path to the directory containing Slynk’s .asd file is in ASDF:*CENTRAL-
REGISTRY*. This file lives in the slynk subdirectory of SLY. Type:

(push #p"/path/to/sly/slynk/" ASDF:*CENTRAL-REGISTRY*)
(asdf:require-system :slynk)

inside a running Lisp image®.
Now all we need to do is startup our Slynk server. A working example uses the default
settings:
(slynk:create-server)

This creates a “one-connection-only” server on port 4005 using the preferred communi-
cation style for your Lisp system. The following parameters to slynk:create-server can
be used to change that behaviour:

:PORT Port number for the server to listen on (default: 4005).

:DONT-CLOSE
Boolean indicating if the server will continue to accept connections after the
first one (default: NIL). For “long-running” Lisp processes to which you want
to be able to connect from time to time, specify :dont-close t

:STYLE See See Section 7.2.1 [Communication style|, page 43.

So a more complete example will be
(slynk:create-server :port 4006 :dont-close t)

Finally, since section we’re going to be tunneling our connection via SSH? we’ll only have
one port open we must tell Slynk’s REPL contrib (see REPL) to not use an extra connection
for output, which it will do by default.

(setf slynk:*use-dedicated-output-stream* nil)
3

L 8Ly also SLIME’s old-style slynk-loader.1lisp loader which does the same thing, but ASDF is preferred

2 there is a way to connect without an SSH tunnel, but it has the side-effect of giving the entire world
access to your Lisp image, so we’re not going to talk about it

3 Alternatively, a separate tunnel for the port set in slynk:*dedicated-output-stream-port* can also
be used if a dedicated output is essential.

Chapter 8: Tips and Tricks 48

8.1.2 Setting up Emacs

Now we need to create the tunnel between the local machine and the remote machine.
Assuming a UNIX command-line, this can be done with:

ssh -L4005:1ocalhost:4005 youruser@remote.example.com

This incantation creates a SSH tunnel between the port 4005 on our local machine and
the port 4005 on the remote machine, where youruser is expected to have an account.?.

Finally we start SLY with sly-connect instead of the usual sly:
M-x sly-connect RET RET

The RET RET sequence just means that we want to use the default host (Localhost) and
the default port (4005). Even though we're connecting to a remote machine the SSH tunnel
fools Emacs into thinking it’s actually localhost.

8.1.3 Setting up pathname translations

One of the main problems with running slynk remotely is that Emacs assumes the files can
be found using normal filenames. if we want things like sly-compile-and-load-file (C-c
C-k) and sly-edit-definition (M-.) to work correctly we need to find a way to let our
local Emacs refer to remote files.

There are, mainly, two ways to do this. The first is to mount, using NFS or similar,
the remote machine’s hard disk on the local machine’s file system in such a fashion that a
filename like /opt/project/source.lisp refers to the same file on both machines. Unfor-
tunately NFS is usually slow, often buggy, and not always feasible. Fortunately we have
an ssh connection and Emacs’ tramp-mode can do the rest. (See See Info file tramp, node
‘Top’.)

What we do is teach Emacs how to take a filename on the remote machine and translate it
into something that tramp can understand and access (and vice versa). Assuming the remote
machine’s host name is remote.example.com, cl:machine-instance returns “remote” and
we login as the user “user” we can use sly-tramp contrib to setup the proper translations
by simply doing:

(add-to-list 'sly-filename-translations
(sly-create-filename-translator
:machine-instance "remote"
:remote-host "remote.example.com"
:username "user"))

8.2 Loading Slynk faster

In this section, a technique to load Slynk faster on South Bank Common Lisp (SBCL) is
presented. Similar setups should also work for other Lisp implementations.

A pre-canned solution that automates this technique was developed by Pierre Neidhardt
(https://gitlab.com/ambrevar/lisp-repl-core-dumper).

4 By default Slynk listens for incoming connections on port 4005, had we passed a :port parameter to
slynk:create-server we’d be using that port number instead

https://gitlab.com/ambrevar/lisp-repl-core-dumper
https://gitlab.com/ambrevar/lisp-repl-core-dumper

Chapter 8: Tips and Tricks 49

For SBCL, we recommend that you create a custom core file with socket support and
POSIX bindings included because those modules take the most time to load. To create such
a core, execute the following steps:

shell$ sbcl
* (mapc 'require '(sb-bsd-sockets sb-posix sb-introspect sb-cltl2 asdf))
* (save-lisp-and-die "sbcl.core-for-sly")

After that, add something like this to your ~/.emacs or ~/.emacs.d/init.el (see
[Emacs Init File], page 40):

(setq sly-lisp-implementations '((sbcl ("sbcl" "--core"
"sbcl.core-for-sly"))))

For maximum startup speed you can include the Slynk server directly in a core file. The
disadvantage of this approach is that the setup is a bit more involved and that you need to
create a new core file when you want to update SLY or SBCL. The steps to execute are:

shell$ sbcl
* (load ".../sly/slynk-loader.lisp")
* (slynk-loader:dump-image "sbcl.core-with-slynk")
Then add this to the Emacs initializion file:
(setq sly-lisp-implementations
"((sbcl ("sbcl" "--core" "sbcl.core-with-slynk")
:init (lambda (port-file _)
(format "(slynk:start-server %S)\n" port-file)))))

8.3 Connecting to SLY automatically

To make SLY connect to your lisp whenever you open a lisp file just add this to your
~/.emacs or ~/.emacs.d/init.el (see [Emacs Init File|, page 40):

(add-hook 'sly-mode-hook
(lambda ()
(unless (sly-connected-p)
(save-excursion (sly)))))

8.4 REPLs and “Game Loops”

When developing Common Lisp video games or graphical applications, a REPL (see Sec-
tion 6.1 [REPL], page 25) is just as useful as anywhere else. But it is often the case that
one needs to control exactly the timing of REPL requests and ensure they do not interfere
with the “game loop”. In other situations, the choice of communication style (see Sec-
tion 7.2.1 [Communication style|, page 43) to the Slynk server may invalidate simultaneous
multi-threaded operation of REPL and game loop.

Instead of giving up on the REPL or using a complicated solution, SLY’s REPL can
be built into your game loop by using a couple of Slynk Common Lisp functions, SLYNK-
MREPL : SEND-PROMPT and SLYNK:PROCESS-REQUESTS.

(defun my-repl-aware-game-loop ()
(loop initially
(princ "Starting our game")

Chapter 8: Tips and Tricks 50

(slynk-mrepl:send-prompt)
for i from O
do (with-simple-restart (abort "Skip rest of this game loop iteration")]]
(when (zerop (mod i 10))
(fresh-line)
(princ "doing high-priority 3D game loop stuff"))
(sleep 0.1)
;3 When you're ready to serve a potential waiting
;3 REPL request, just do this non-blocking thing:
(with-simple-restart (abort "Abort this game REPL evaluation")]]
(slynk:process-requests t)))))

Note that this function is to be called from the REPL, and will enter kind of “sub-REPL”
inside it. It’ll likely “just work” in this situation. However, if you need you need to call
this from anywhere else (like, say, another thread), you must additionally arrange for the
variable SLYNK-APTI:*CHANNEL* to be bound to the value it is bound to in whatever SLY
REPL you wish to interact with your game.

8.5 Controlling SLY from outside Emacs

If your application has a non-SLY, non-Emacs user interface (graphical or otherwise), you
can use it to exert some control over SLY functionality, such as its REPL (see Section 6.1
[REPL], page 25) and inspector (see Section 6.2 [Inspector|, page 29). This requires that
you first set, in Emacs, variable sly-enable-evaluate-in-emacs to non-nil. As the name
suggests, it lets outside Slynk servers evaluate code in your Elisp runtime. It is set to nil
by default for security purposes.

Once you’ve done that, you can call SLYNK-MREPL : COPY-TO-REPL-IN-EMACS from your
CL code with some objects you'd like to manipulate in the REPL. Then you can have this
code run from some Ul event handler:

(lambda ()
(slynk-mrepl:copy-to-repl-in-emacs
(list 42 'foo)
:blurb "Just a forty-two and a foo"))
And see those objects pop up in your REPL for inspection and manipulation.

You can also use the functions SLYNK: INSPECT-IN-EMACS, SLYNK:ED-IN-EMACS, and in
general, any exported function ending in IN-EMACS. See their docstrings for details.

o1

9 Extensions

Extensions, also known as “contribs” are Emacs packages that extend SLY’s functionality.
Contrasting with its ancestor SLIME (see Chapter 1 [Introduction], page 1), most contribs
bundled with SLY are active by default, since they are a decent way to split SLY into
pluggable modules. The auto-documentation (see Section 4.3 [Autodoc], page 13), trace
(see Section 6.4 [Trace Dialog], page 32) and Stickers (see Section 6.5 [Stickers|, page 35)
are contribs enabled by default, for example.

Usually, contribs differ from regular Emacs plugins in that they are partly written in
FEmacs-lisp and partly in Common Lisp. The former is usually the UI that queries the
latter for information and then presents it to the user. SLIME used to load all the contribs’
Common Lisp code upfront, but SLY takes care to loading these two parts at the correct
time. In this way, developers can write third-party contribs that live independently of SLY
perhaps even in different code repositories. The sly-macrostep contrib (https://github.
com/joaotavora/sly-macrostep) is one such example.

A special sly-fancy contrib package is the only one loaded by default. You might never
want to fiddle with it (it is the one that contains the default extensions), but if you find that
you don’t like some package or you are having trouble with a package, you can modify your
setup a bit. Generally, you set the variable sly-contribs with the list of package-names
that you want to use. For example, a setup to load only the sly-scratch and sly-mrepl
packages looks like:

;3 Setup load-path and autoloads
(add-to-list 'load-path "~/dir/to/cloned/sly")
(require 'sly-autoloads)

;3 Set your lisp system and some contribs
(setq inferior-lisp-program "/opt/sbcl/bin/sbcl")
(setq sly-contribs '(sly-scratch sly-mrepl))

After starting SLY, the commands of both packages should be available.

9.1 Loading and unloading “on the fly”

We recommend that you setup the sly-contribs variable before starting SLY via M-x sly,
but if you want to enable more contribs after you that, you can set new sly-contribs
variable to another value and call M-x sly-setup or M-x sly-enable-contrib. Note this
though:

e If you’ve removed contribs from the list they won’t be unloaded automatically.

e If you have more than one SLY connection currently active, you must manually repeat
the sly-setup step for each of them.

Short of restarting Emacs, a reasonable way of unloading contribs is by calling an Emacs
Lisp function whose name is obtained by adding —unload to the contrib’s name, for every
contrib you wish to unload. So, to remove sly-mrepl, you must call sly-mrepl-unload.
Because the unload function will only, if ever, unload the Emacs Lisp side of the contrib,
you may also need to restart your lisps.

https://github.com/joaotavora/sly-macrostep
https://github.com/joaotavora/sly-macrostep

Chapter 9: Extensions 52

9.2 More contribs
9.2.1 TRAMP

The package s1ly-tramp provides some functions to set up filename translations for TRAMP.
(see Section 8.1.3 [Setting up pathname translations|, page 48)

9.2.2 Scratch Buffer

The SLY scratch buffer, in contrib package sly-scratch, imitates Emacs’ usual *scratch*
buffer. If sly-scratch-file is set, it is used to back the scratch buffer, making it persistent.
The buffer is like any other Lisp buffer, except for the command bound to C-j.
C-Jj
M-x sly-eval-print-last-expression
Evaluate the expression sexp before point and insert a printed representation
of the return values into the current buffer.

M-x sly-scratch
Create a *sly-scratch* buffer. In this buffer you can enter Lisp expressions
and evaluate them with C-j, like in Emacs’s *scratch* buffer.

93

10 Credits

The soppy ending...

Hackers of the good hack

SLY is a fork of SLIME which is itself an Extension of SLIM by Eric Marsden. Please consult
the Git repository for a list of authors and code-contributors of SLY, as well as the bundled
code from hyperspec.el, CLOCC, and the CMU AI Repository.

Many people on the sly-devel mailing list have made non-code contributions to SLY.

Thanks!

We’re indebted to the good people of common-lisp.net for their hosting and help, and for
rescuing us from “Sourceforge hell.”

Implementors of the Lisps that we support have been a great help. We’d like to thank
the CMUCL maintainers for their helpful answers, Craig Norvell and Kevin Layer at Franz
providing Allegro CL licenses for SLY development, and Peter Graves for his help to get
SLY running with ABCL.

Most of all we're happy to be working with the Lisp implementors who’ve joined in the
SLY development: Dan Barlow and Christophe Rhodes of SBCL, Gary Byers of OpenMCL,
and Martin Simmons of LispWorks. Thanks also to Alain Picard and Memetrics for funding
Martin’s initial work on the LispWorks backend!

Key (Character) Index

S 32
<

LS PP 32
>

> 30, 32
0

0 v O 31
A

2 P 31
A 32
B

B o 32
o 31
C ot 32
G e e 15
CmC f it 11
CmC Kttt 17
CmC > e e 18
G 7 e 23, 25
C=C Cb et 22, 26
CmC CmC ittt 12, 18, 31
C—c C—d #. . e 21
C=c C=d ™ e 21
C=c C-d Ca...iiiitii i 20
C-cC-dC-d....coiiiiii e 20
C-c C-dC—f... . 20
C—c C-dC-h....oiiiii i 20
C-CC-dCP.ue 20
C—CC-dC=Z. . ittt e 20
C=C G ettt e e 12, 18
C=C G e 12
CoC Gttt 14, 15

54

CC P ettt 11
C=C G et 11
C=C Gt it 22, 33
CmC U ettt e e e e e 11
C=C C=W =Dttt 17
C=C C-W CmC ettt e e e e 17
C—C C-W G M. ottt e e e e 17
C=C CmW T et 17
C=C C-W CmS . ettt et e e e 17
C=C CW G e ettt e e et 17
C=C B ettt e 21
C=C G Ml ettt ettt et e 21
CC G X P 21
CmC CmZ et 25
C=C E i 11
C=C I e 29
CmC MGttt e 13
C—C M-d. ... 22
C=C M=K i e 12
C=C M. .t 14
CmC M0 it 26
CmC Tt e e e e e e e 33
Cmd e e e 52
[0 34
CoM . et 26
CM-P.e 26
M=K et e 11
L PP 19
D 19
(O P 26
Cm T e 13
CmX 4 o 16
C=X B i 16
C=X Gttt 11
D

Qo 22, 31
Dot 29, 31
E

=R AP 29, 31
G

=P 15, 22, 30, 34
G ot e 34

Key (Character) Index

H
B 30
|

A e 31
L

L 30
M

Moy e 16
Mo 16
Ml e 17
T 13, 26, 32
M-poo 13, 26, 32
M-RET . . ot e 30
N

95
P
Do 31
o PP 15, 22, 30, 31
R
L o 32
R 22, 32
RET ... 18, 22, 25, 29
S-TAB . . 30
Space. ... 18
T
L2 30
tab..... 19
TAB .o 25, 30
Vv
Ve e e 29, 30

56

Command and Function Index

B

backward-button............ i, 30

F

forward-button, 30

H

hyperspec-lookup-format..................... 21
hyperspec-lookup-reader-macro.............. 21

I

isearch-backward..............coiiiiiniinin.. 26

N

BAT=5 4 Al e PP 13

S

sly-abort-connection 22
S1y—apPTOPOSvtiiii 20
sly-apropos—allccuiiiiiiinnnnnnnn. 20
sly-apropos-package.......................... 20
sly-arglist NAME 13
sly-autodoc-manually 13
sly-autodoc-mode 13
sly-button-backward.......................... 26
sly-button-forward........................... 26
sly-calls-whoccoviuiiiiiiiiiinnnnn. 17
sly-cd. ... 23
sly-choose-completion....................... 19
sly-compile-and-load-file................... 12
sly-compile-defun...............coovviiian, 12
sly-compile-file............................. 12
sly-compile-region...........ccoiuiuuunnnnnnn. 12
sly-compiler-macroexpand.................... 14
sly-compiler-macroexpand-1.................. 14
sly-conmnect..........ooiiiiiiiiiiiiii 22
sly-connection-list-make-default........... 22
sly-db-abort................l 31
sly-db-beginning-of-backtrace.............. 32
sly-db-break-with-default-debugger 32
sly-db-break-with-system-debugger 32
sly-db-continue................... 31

sly-db-details-down.......................... 32

sly-db-details-up............................ 32
sly-db-disassemble....................... ... 31
sly-db-down................ i 31
sly-db-end-of-backtrace..................... 32
sly-db-eval-in-frame 31
sly-db-inspect-condition.................... 32
sly-db-inspect-in-frame..................... 31
sly-db-invoke-restart-n..................... 31
sly-db-pprint-eval-in-frame 31
sly-db-quit..............l 31
sly-db-recompile-frame-source.............. 31
sly-db-restart-frame 32
sly-db-return-from-frame.................... 32
sly-db-show-frame-source.................... 30
sly-db-toggle-details 30
sly-db-up.............. ... 31
sly-describe-function.................... ... 20
sly-describe-symbol.......................... 20
sly-disassemble-symbol 22
sly-disconnectooiiiiiiiiiiian. 22
sly-edit-definition.......................... 16
sly-edit-definition-other-frame............ 16
sly-edit-definition-other-window........... 16
sly-edit-usesl 17
sly-edit-valuecooiiiiiiiinan. 11
sly-eval-defun L. 11
sly-eval-last-expression.................... 11
sly-eval-print-last-expression............. 52
sly-eval-region.............................. 11
sly-expand-1......... ...ttt 14
sly-format-string-expand.................... 14
sly-goto-connection.......................... 22
sly-goto-xrefl 18
sly-hyperspec-lookup 20
sly-info......... ...l 20
sly-inspect....... ..o 29
sly-inspector-describe-inspectee........... 29
sly-inspector-eval........................... 29
sly-inspector-fetch-all..................... 30
sly-inspector-history....................... 30
sly-inspector-next........................... 30
sly-inspector-operate-on-point............. 29
sly-inspector-pop............. ... il 30
sly-inspector-quit................... 30
sly-inspector-reinspect..................... 30
sly-inspector-toggle-verbose............... 29
sly-interactive-eval..................... 11, 32
sly-interrupt................ 22, 26
sly-list-callees...................ooiiinin. 18
sly-list-callers............................. 17
sly-list-connections 21
sly-load-file ..., 12
sly-macroexpand-1............................ 14
sly-macroexpand-1-inplace................... 15
sly-macroexpand-all.......................... 14

Command and Function Index

sly-macroexpand-undo 15
sly-mrepl............oi i 25
sly-mrepl-clear-recent-output.............. 26
sly-mrepl-clear-repl 26
sly-mrepl-copy-part-to-repl................ 30
sly-mrepl-indent-and-complete-symbol...... 25
sly-mrepl-newcoiiiiiiiiiiiiiian, 25
sly-mrepl-next-input-or-button............. 26
sly-mrepl-previous-input-or-button........ 26
sly-mrepl-return............................. 25
Sly-mrepl-Sync..............c..oiiiiiaan. 23, 25
sly-next-completion.......................... 19
sly-next-connection.......................... 21
sly-next-notel 13
sly-pop-find-definition-stack.............. 16
sly-pprint-eval-last-expression............ 11
sly-prev-completion.......................... 19
sly-prev-connection.......................... 21
sly-previous-note................. 13
Sly-pwd ... 23
sly-recompile-all-xrefs..................... 18

sly-recompile-xref..................... 18

o7
sly-remove-method............................ 12
sly-remove-notes......................... ... 13
sly-restart-connection-at-point............ 22
sly-restart-inferior-lisp................... 22
sly-scratch.................a, 52
sly-show-xref 18
sly-temp-buffer-quit..................... 15, 22
sly-toggle-trace-fdefinition............... 22
sly-trace-dialog..................... 33
sly-trace-dialog-clear-fetched-traces..... 34
sly-trace-dialog-fetch-status.............. 34
sly-trace-dialog-fetch-traces.............. 34
sly-trace-dialog-toggle-trace.............. 33
sly-undefine-function....................... 11
sly-untrace-allcciiuiniinnnnnnnn. 22
sly-update-connection-list.................. 22
sly-who-bindsL 17
sly-who-calls ..., 17
sly-who-macroexpands 17
sly-who-references........................... 17
sly-who-sets................l 17
sly-who-specializes.......................... 17

o8

Variable and Concept Index

A

ASCIT .o 42
Character Encoding............. 42
Compilation 12
Compiling Functions.............. 12
Completion....... ..., 18
Contribs. . ..o 51
Contributions. ... 51
D

Debugger 30
E

Extensions.......... it 51
L

LATIN-1 o e 42

Listener 25

M

MacCroS .« 14
P

Plugins ... 51
S

Symbol Completion...............cooviinne.... 18
T

TRAMP .. 52
U

Unicode ... 42
UTF-8. oo e 42

	Table of Contents
	1 Introduction
	2 Getting started
	Supported Platforms
	Downloading SLY
	Basic setup
	Running SLY
	Basic customization
	Multiple Lisps

	3 A SLY tour for SLIME users
	4 Working with source files
	Evaluating code
	Compiling functions and files
	Autodoc
	Semantic indentation
	Reader conditional fontification
	Macro-expansion commands

	5 Common functionality
	Finding definitions
	Cross-referencing
	Auto-completion
	Interactive objects
	Documentation commands
	Multiple connections
	Disassembly commands
	Abort/Recovery commands
	Temporary buffers
	Multi-threading

	6 The REPL and other special buffers
	The REPL: the ``top level''
	REPL commands
	REPL output
	REPL backreferences

	The Inspector
	The SLY-DB Debugger
	Examining frames
	Invoking restarts
	Navigating between frames
	Miscellaneous Commands

	Trace Dialog
	Stickers

	7 Customization
	Emacs-side
	Keybindings
	Keymaps
	Defcustom variables
	Hooks

	Lisp-side (Slynk)
	Communication style
	Other configurables

	8 Tips and Tricks
	Connecting to a remote Lisp
	Setting up the Lisp image
	Setting up Emacs
	Setting up pathname translations

	Loading Slynk faster
	Connecting to SLY automatically
	REPLs and ``Game Loops''
	Controlling SLY from outside Emacs

	9 Extensions
	Loading and unloading ``on the fly''
	More contribs
	TRAMP
	Scratch Buffer

	10 Credits
	Hackers of the good hack
	Thanks!

	Key (Character) Index
	:
	<
	>
	0
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	V

	Command and Function Index
	B
	F
	H
	I
	N
	S

	Variable and Concept Index
	A
	C
	D
	E
	L
	M
	P
	S
	T
	U

